

Photo N° 1

Vue de l'accès au site - RD3



Photo N° 3 Vue du passage sous la RD3

Photo N° 4

Vue du fossé Sud et sondage réalisé en 2021

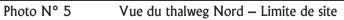


Photo N° 6 Vue du thalweg Nord – Aval du site

ANNEXE 3: DOCUMENTS

1. COEFFICIENTS DE MONTANA

PRECIPITATIONS DE DUREE DE RETOUR FIXEE

Cumuls de 6 minutes à 192 heures - Durée de retour 10 ans - méthode du renouvellement

Statistiques sur la période 1989 - 2012

CAVAILLON (84)

Indicatif: 84035003, alt: 70 m., lat: 43°51'18"N, lon: 05°01'54"E

Le tableau représente, pour différentes durées de cumul, les hauteurs de précipitations qui ont une probabilité de se reproduire une fois tous les 10 ans.

La méthode utilisée est la méthode du renouvellement qui ajuste pour une station toutes les précipitations supérieures à un seuil donné :

- les hauteurs sont ajustées par une loi de Pareto généralisée
- la loi utilisée pour ajuster les nombres annuels de dépassement pouvant différer suivant le cumul traité, elle est donnée dans le tableau

Durée de l'épisode	Hauteur estimée	Intervalle de confiance à 70 %		Nombre d'années étudiées	Loi utilisée
6 minutes	15.7 mm	13.6 mm	17.7 mm	16	lois asymptotique
15 minutes	30.2 mm	24.7 mm	35.7 mm	18	lois asymptotique
30 minutes	41.5 mm	34.1 mm	48.8 mm	19	lois asymptotique
1 heure	53.9 mm	44.5 mm	63.4 mm	19	lois asymptotique
2 heures	72.6 mm	53.9 mm	91.4 mm	19	lois asymptotique
3 heures*	-	-	-	-	-
6 heures	91.1 mm	72.3 mm	110.0 mm	19	lois asymptotique
12 heures	106.6 mm	91.3 mm	121.9 mm	19	lois asymptotique
24 heures	122.3 mm	101.1 mm	143.6 mm	19	lois asymptotique
48 heures	142.9 mm	121.0 mm	164.7 mm	19	lois asymptotique
96 heures	158.5 mm	132.0 mm	185.1 mm	19	lois asymptotique
192 heures*	-	_	_	_	-

^{*} pour ces pas de temps les hauteurs n'ont pas pu être ajustées.

Page 1/1

Edité le : 05/03/2015

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

PRECIPITATIONS DE DUREE DE RETOUR FIXEE

Cumuls de 6 minutes à 192 heures - Durée de retour 100 ans - méthode du renouvellement

Statistiques sur la période 1989 - 2012

CAVAILLON (84)

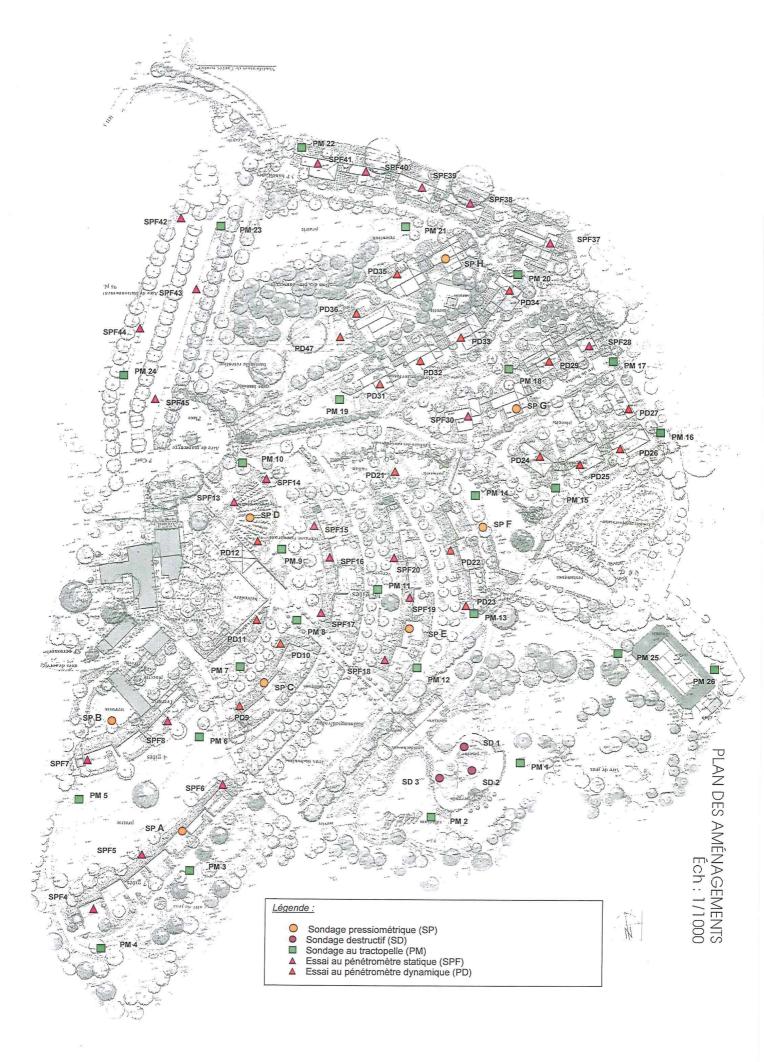
Indicatif: 84035003, alt: 70 m., lat: 43°51'18"N, lon: 05°01'54"E

Le tableau représente, pour différentes durées de cumul, les hauteurs de précipitations qui ont une probabilité de se reproduire une fois tous les 100 ans.

La méthode utilisée est la méthode du renouvellement qui ajuste pour une station toutes les précipitations supérieures à un seuil donné :

- les hauteurs sont ajustées par une loi de Pareto généralisée
- la loi utilisée pour ajuster les nombres annuels de dépassement pouvant différer suivant le cumul traité, elle est donnée dans le tableau

Durée de l'épisode	Hauteur estimée	Intervalle de confiance à 70 %		Nombre d'années étudiées	Loi utilisée
6 minutes	22.4 mm	16.3 mm	28.4 mm	16	lois asymptotique
15 minutes	56.9 mm	35.1 mm	78.7 mm	18	lois asymptotique
30 minutes	78.4 mm	48.3 mm	108.5 mm	19	lois asymptotique
1 heure	101.5 mm	59.1 mm	144.0 mm	19	lois asymptotique
2 heures	173.5 mm	59.9 mm	287.1 mm	19	lois asymptotique
3 heures*	-	-	_	-	-
6 heures	192.3 mm	99.1 mm	285.5 mm	19	lois asymptotique
12 heures	176.5 mm	117.9 mm	235.0 mm	19	lois asymptotique
24 heures	232.5 mm	132.9 mm	332.0 mm	19	lois asymptotique
48 heures	243.3 mm	164.1 mm	322.6 mm	19	lois asymptotique
96 heures	292.6 mm	176.6 mm	408.6 mm	19	lois asymptotique
192 heures*	-	-	_	-	-


^{*} pour ces pas de temps les hauteurs n'ont pas pu être ajustées.

Page 1/

Edité le : 05/03/2015

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

2. ÉTUDE FONDASOL - 2020

SA FONDASOL -Agence d'Avignon

INGENIERIE GEOTECHNIQUE

EA.10.0147 pièce 1 page 9

III. RESULTATS DES INVESTIGATIONS IN SITU

Situé à flanc de colline et particulièrement vaste, le site présente un contexte lithologique et géomécanique particulièrement variable d'un point à l'autre du projet.

III.1. CARACTERISATION EN SOLS TYPES

Nos sondages ont permis de caractériser les grandes familles de sols types suivants

les limons de couverture. Sol type 0: A

les éboulis/colluvions de cailloutis calcaires limoneux, compacts. Sol type 1: A

les éboulis/colluvions argileuses et débris marneux. Sol type 2: A

les marnes sableuses et les sables marneux compacts. Sol type 4:

les limons silto-argileux à argilo-silteux peu compacts.

Sol type 3:

A

A

Etant donné l'hétérogénéité du contexte lithologique à l'échelle du site complet, les synthèses géologiques seront présentées zone par zone (cf. pièces complémentaires (002 à 006) on se reportera au plan de zonage en annexe). le calcaire et les marnes calcaires. Sol type 5: A

III.2. NIVEAUX D'EAU

Lors de notre intervention (juin 2010) nous avons rencontré l'eau dans les sondages aux profondeurs suivantes:

Г	Néant	Néant	5,0 m	Néant	0,2 m	Néant	Néant	Néant	3,5 m	Néant	4,4 m
888889997	SD3	SD2	SD1	SPH	SPG	SPF	SPE	SPD	SPC	SPB	SPA

Remarque concernant le niveau d'eau observé en SPG (0,2 m)

Lors de notre intervention ce secteur du site était très humide en surface et l'on observait des stagnations d'eau. Ce niveau mesuré est vraisemblablement lié à la présence d'eau en surface. Il traduit plus vraisemblablement un défaut de drainage de la zone qu'un niveau de nappe.

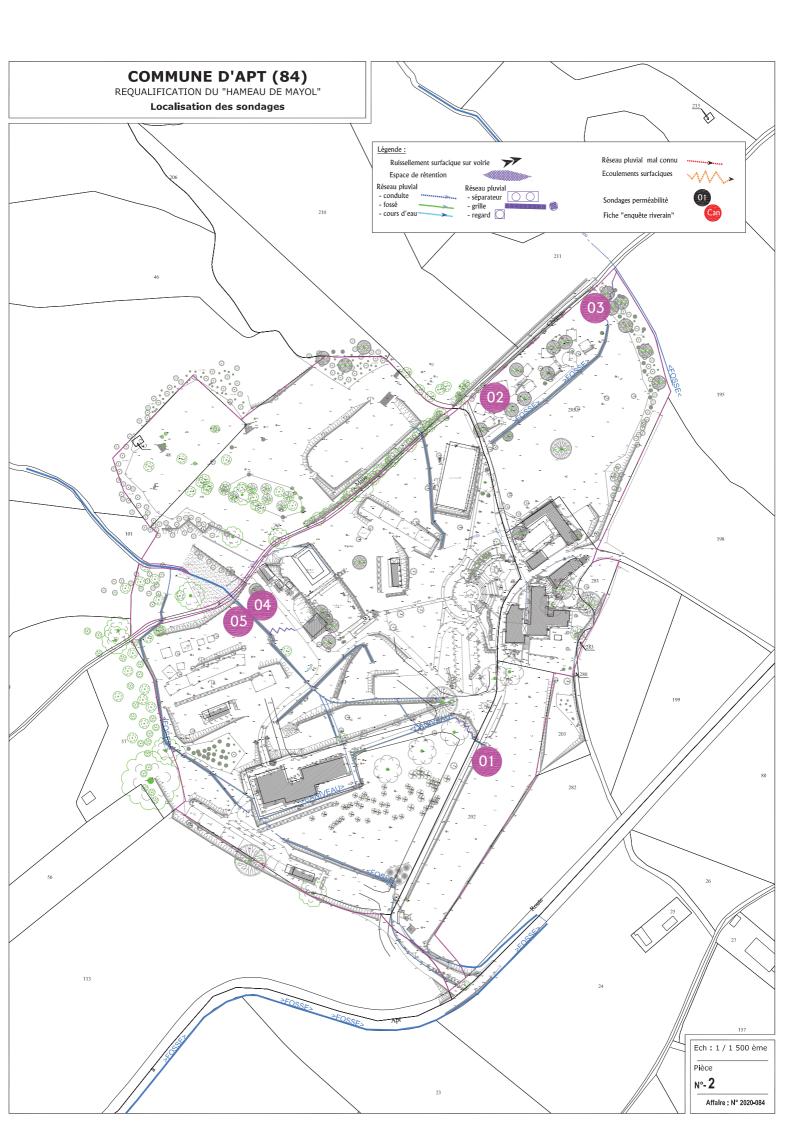
Le niveau de la nappe peut fluctuer en fonction des conditions météorologiques et des saisons.

Notons que des circulations d'eau pourraient avoir lieu au-dessus de ces niveaux mesurés en périodes humides, selon des cheminements préférentiels, en particulier à l'interface des sols caillouteux ou sableux très poreux et des sols argileux ou marneux peu perméables.

Nous avons posé un tube piézométrique dans les forages SPA - SPC - SPE - SPG afin que vous puissiez suivre le niveau de l'eau en phase étude, ou relever le niveau de la nappe avant le chantier

3. Tests de perméabilité - 2021

TERRESENS Page 11 sur 19


2.2. PERMÉABILITÉ

Cinq tests de percolation (test Lefranc après 4 h de saturation) ont été réalisés au droit des fouilles précitées. Les résultats de ces essais, obtenus après 4 heures de saturation, sont reportés dans le tableau suivant :

Sondage	S1	S2	S3	S4	S5
Profondeur de l'essai	de 0,80 à 1,00	De 1,10 à 1,30	De 1,60 à 1,80	De 1,80 à 2,00	De 1,90 à 2,10
(m/TN)					
Coefficient de perméabilité	48	60	66	36	27
(mm/h ou L/m²/h)					
Coefficient de perméabilité	1,33E-005	1,67E-005	1,83E-005	1,00E-005	7,50E-006
(m/s)					

Les perméabilités sont **médiocres** pour l'infiltration des eaux.

Nous restons à la disposition des responsables du projet pour tous renseignements complémentaires.

4. PLU DE LA COMMUNE

14.3 Prescriptions relatives aux opérations d'aménagement d'ensemble et aux projets individuels ou collectifs de surface supérieure à 2 000 m² non situés dans une opération d'aménagement d'ensemble avec mesures compensatoires

Pour les opérations d'aménagement d'ensemble et les projets dont la superficie est supérieure à 2 000 m² et ne s'intégrant pas à une zone d'aménagement d'ensemble pour laquelle des dispositifs de rétention auraient déjà été prévus en tenant compte dudit projet, il s'agit :

- de limiter, dans la mesure du possible, le coefficient d'imperméabilisation des sols et favoriser des revêtements de sols perméables (résine, structures nid d'abeille, terrasses en bois, allées en graviers, ...),
- d'éviter autant que possible le rejet direct des eaux de toitures, cours et terrasses, ou plus globalement de projets, sur le domaine public ou dans tout réseau pluvial,
- de favoriser le ralentissement et l'étalement des eaux de ruissellement des surfaces imperméabilisées ou couvertes, de mettre en place obligatoirement un ou des dispositifs de rétention dimensionnés sur la base des principes suivants :

Zone 1 à sensibilité faible :

- volume minimal de rétention de 60 l/m² imperméabilisé, qu'il s'agisse d'une imperméabilisation nouvelle ou existante sur la zone de projet,
- orifice de vidange circulaire en fond de dispositif ayant un diamètre minimum de 50 mm ou section équivalente et un diamètre maximum offrant un débit de fuite maximum de 13 l/s/ha drainé par le projet,
- surverse de sécurité dimensionnée pour assurer une protection centennale.

Zone 2 à sensibilité moyenne :

- volume minimal de rétention de 100 l/m² imperméabilisé, qu'il s'agisse d'une imperméabilisation nouvelle ou existante sur la zone de projet,
- orifice de vidange circulaire en fond de dispositif ayant un diamètre minimum de 50 mm ou section équivalente et un diamètre maximum offrant un débit de fuite maximum de 13 l/s/ha drainé par le projet,
- surverse de sécurité dimensionnée pour assurer une protection centennale.

Zone 3 à sensibilité forte :

- volume minimal de rétention de 160 l/m² imperméabilisé, qu'il s'agisse d'une imperméabilisation nouvelle ou existante sur la zone de projet,
- orifice de vidange circulaire en fond de dispositif ayant un diamètre minimum de 50 mm ou section équivalente et un diamètre maximum offrant un débit de fuite maximum de 13 l/s/ha drainé par le projet,
- surverse de sécurité dimensionnée pour assurer une protection centennale.

ANNEXE 4: <u>CALCULS</u> <u>ET</u> <u>DÉTAILS</u>

1. HYDROLOGIE

Calcul de débit par la méthode Rationnelle

Hameau des Mayols

		•
BASSIN VERSANT	UH amont	
Surface (ha)	30.4	"
Longueur (m)	1000	
Pente (m/m)	0.050	0.060
Imperm %	100	
Coef d'allongement	1.81	
Correction	1.8	

0.30	km2
Point culminant	330
Pont médian	320
Point exutoire	270

3	
Temps de conc :	35.2 min

_	UH amont				
	Cr (%)	Q m3/s (tc estimé par Passini)			
1					
2					
5					
10	22	1.37			
20					
25					
30					
50					
75					
100	44	5.13			

1
2 5
5
10
20
25 30
30
50 75
75
100

13/07/2021 (page 1)

Projet:

Type de simulation :

1 - (DTS) P010-015a du 01/01/2019 00:00 au 02/01/2019 06:00

Nom Bassins versants	Noeud	Surface (Ha)	Débit (m3/s)	Volume (m3)	
ESP VERT 1	08	0.14	0.011	34.5	
ESP VERT 2	04b	0.41	0.031	100.9	
ESP VERT 3	04b	0.07	0.005	17.2	
Maison N4	07	0.14	0.026	69.7	
Maison N5	06	0.12	0.021	57.1	
Maison N6	05	0.19	0.034	92.9	
Voirie N1	04	0.01	0.004	10.9	
Voirie N2	03	0.05	0.014	39.0	

Volume Total Produit (m3): 422

13/07/2021 (page 1)

Projet:

Type de simulation :

1 - (DTS) P100-015a du 01/01/2019 00:00 au 01/01/2019 03:42

Nom Bassins versants	Noeud	Surface (Ha)	Débit (m3/s)	Volume (m3)	
ESP VERT 1	08	0.14	0.038	159.5	
ESP VERT 2	04b	0.41	0.11	466.0	
ESP VERT 3	04b	0.07	0.019	79.4	
Naison N4	07	0.14	0.061	228.0	
Naison N5	06	0.12	0.05	186.6	
Maison N6	05	0.19	0.082	304.4	
/oirie N1	04	0.01	0.007	25.2	
/oirie N2	03	0.05	0.024	90.0	

Volume Total Produit (m3): 1 539

13/07/2021 (page 1)

Projet:

Type de simulation :

1 - (DTS) P010-015a du 01/01/2019 00:00 au 02/01/2019 06:00

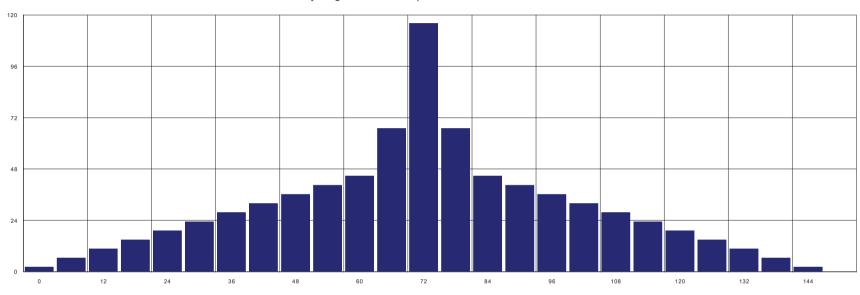
OM assins versants	Noeud	Surface (Ha)	Débit (m3/s)	Volume (m3)	
ESP VERT 1	26	0.12	0.009	30.1	
Maison 1	27	0.32	0.048	157.0	
Maison 2	18	0.40	0.06	196.6	
Voirie 1	25	0.03	0.009	24.9	
Voirie 2	24	0.04	0.012	31.5	
Voirie 3	27	0.05	0.012	31.9	
ESP VERT 1	02	0.12	0.009	29.4	
ESP VERT 2	02	0.31	0.023	75.0	
Maison 06a	06	0.05	0.008	24.8	
Maison 06b	06	0.05	0.008	25.7	
Maison 1	02	0.22	0.033	108.9	
Maison 19	15	0.28	0.021	68.0	
Maison 2	32	0.63	0.095	309.8	
Maison 3	10	0.11	0.016	52.1	
Maison 4	08	0.19	0.028	90.9	
Maison 5	29	0.23	0.034	111.6	
Maison 6	07	0.12	0.018	59.8	
Maison 7	19	0.04	0.006	18.2	
Maison 8	29	0.17	0.025	82.5	
MAS	17	0.28	0.061	185.2	
VIGNE 1	20	1.08	0.062	264.4	
VIGNE 2	28	0.42	0.027	103.2	
Voirie 05	16	0.06	0.019	51.3	
Voirie 07a	07	0.01	0.004	10.7	
Voirie 07b	04	0.04	0.013	35.8	
Voirie 08	08	0.02	0.007	20.0	
Voirie 09	09	0.02	0.007	19.9	
Voirie 11	14	0.09	0.028	76.7	
Voirie 12	11	0.07	0.022	59.0	
Voirie 13	13	0.06	0.018	47.9	
Voirie 17	17	0.05	0.015	41.1	

Volume Total Produit (m3): 2 444

13/07/2021 (page 1)

Projet:

Type de simulation :

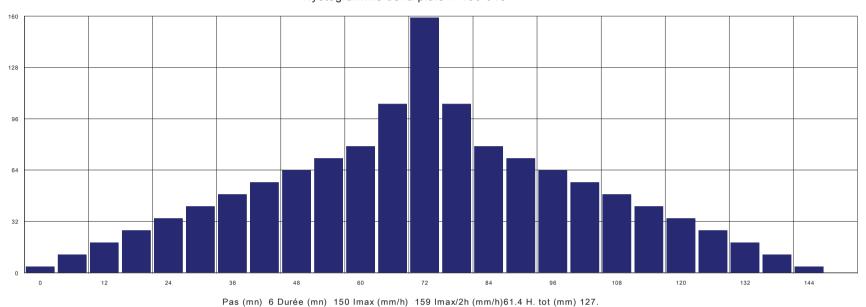

1 - (DTS) P100-015a du 01/01/2019 00:00 au 01/01/2019 03:42

Nom Bassins versants	Noeud	Surface (Ha)	Débit (m3/s)	Volume (m3)	
CESP VERT 1	26	0.12	0.033	138.8	
C Maison 1	27	0.32	0.12	513.4	
C Maison 2	18	0.40	0.15	642.8	
C Voirie 1	25	0.03	0.015	57.4	
C Voirie 2	24	0.04	0.019	72.6	
C Voirie 3	27	0.05	0.023	87.5	
S ESP VERT 1	02	0.12	0.032	135.7	
S ESP VERT 2	02	0.31	0.082	346.5	
S Maison 06a	06	0.05	0.019	81.2	
S Maison 06b	06	0.05	0.02	84.0	
S Maison 1	02	0.22	0.085	356.1	
S Maison 19	15	0.28	0.11	444.8	
S Maison 2	32	0.63	0.24	1013.0	
S Maison 3	10	0.11	0.041	170.5	
S Maison 4	08	0.19	0.071	296.7	
S Maison 5	29	0.23	0.087	364.5	
S Maison 6	07	0.12	0.047	195.6	
S Maison 7	19	0.04	0.014	59.4	
S Maison 8	29	0.17	0.064	269.9	
S MAS	17	0.28	0.13	507.0	
S VIGNE 1	20	1.08	0.25	1218.6	
S VIGNE 2	28	0.42	0.1	476.2	
S Voirie 05	16	0.06	0.032	118.2	
S Voirie 07a	07	0.01	0.007	24.6	
S Voirie 07b	04	0.04	0.022	82.6	
S Voirie 08	08	0.02	0.012	46.1	
S Voirie 09	09	0.02	0.012	45.7	
S Voirie 11	14	0.09	0.047	176.9	
S Voirie 12	11	0.07	0.036	135.9	
S Voirie 13	13	0.06	0.029	110.3	
S Voirie 17	17	0.05	0.025	94.8	

Volume Total Produit (m3): 8 367

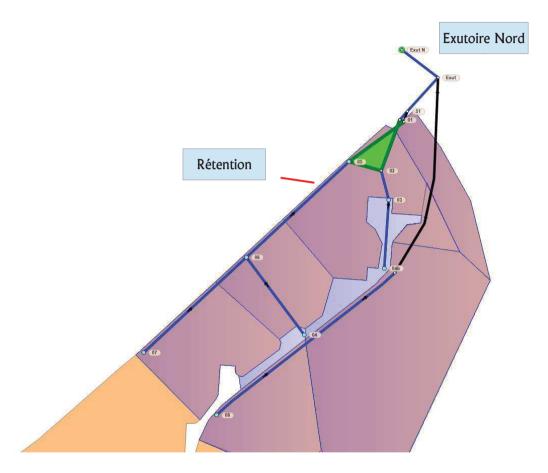
2. HYDRAULIQUE

Hyétogramme de la pluie P010-015



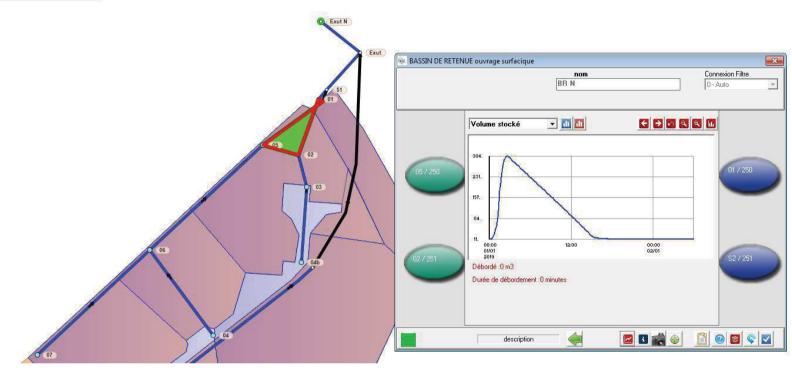
Pas (mn) 6 Durée (mn) 150 Imax (mm/h) 116 Imax/2h (mm/h)36.8 H. tot (mm) 76.4

Pluie décennale - Coefficient de Montana - Carpentras (1994 - 2018) - Ajustement 6 min - 1h

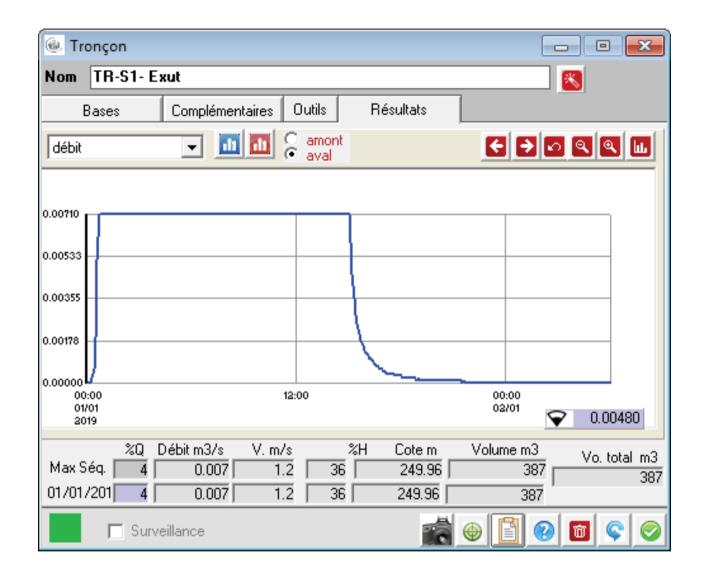


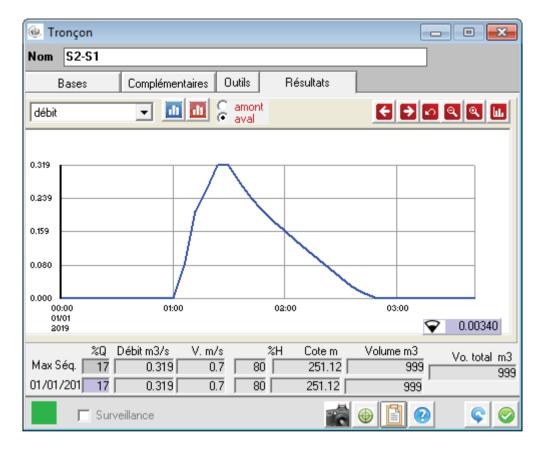
Hyétogramme de la pluie P100-015

Pluie centennale - Coefficient de Montana - Carpentras (1994 - 2018) - Ajustement 6 min - 1h

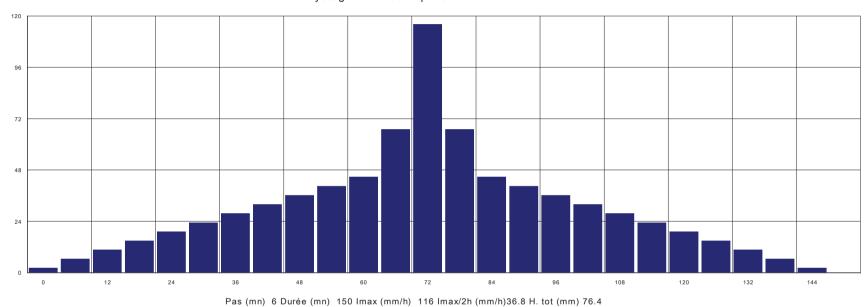


Modèle réalisé – Configuration future du site – Partie Nord

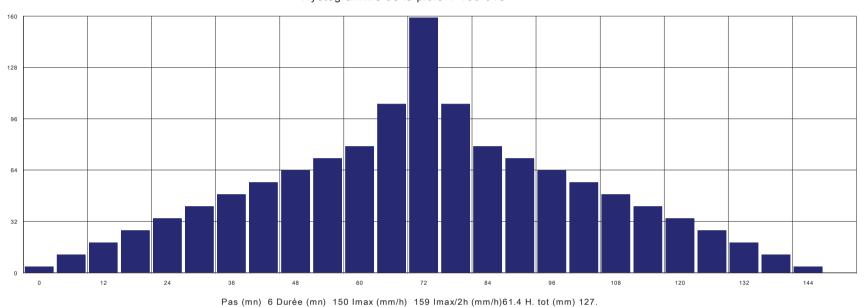



Dimensionnement du stockage (305 m³) - Situation décennale

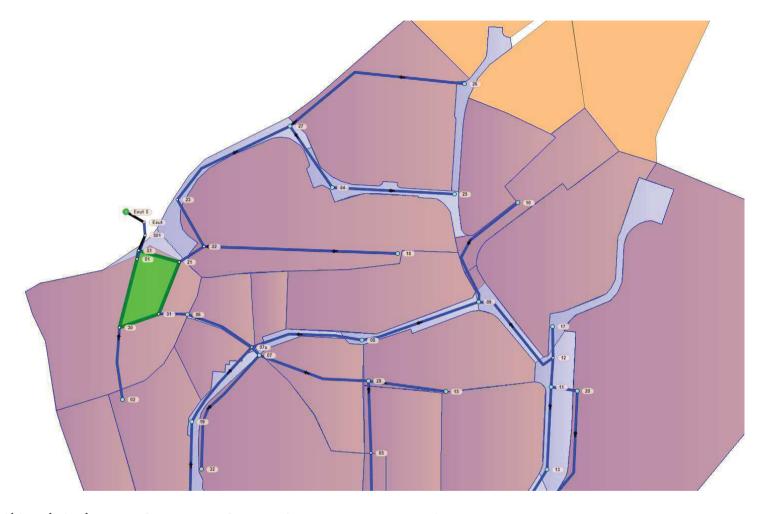
Débit de fuite de la noue de rétention – Débit de fuite en pointe 7 l/s – **Situation décennale** Temps de vidange 16 h



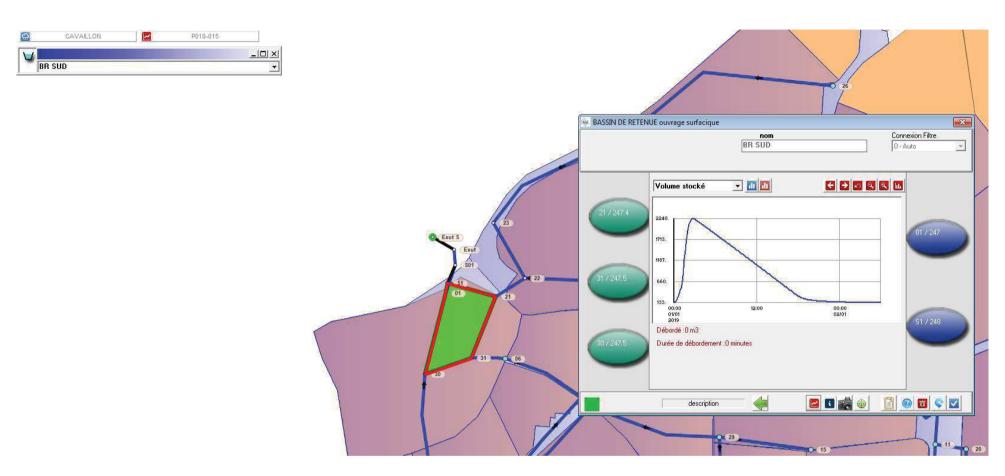
Surverse du bassin de rétention – Débit de fuite en pointe 320 l/s – **Situation centennale**

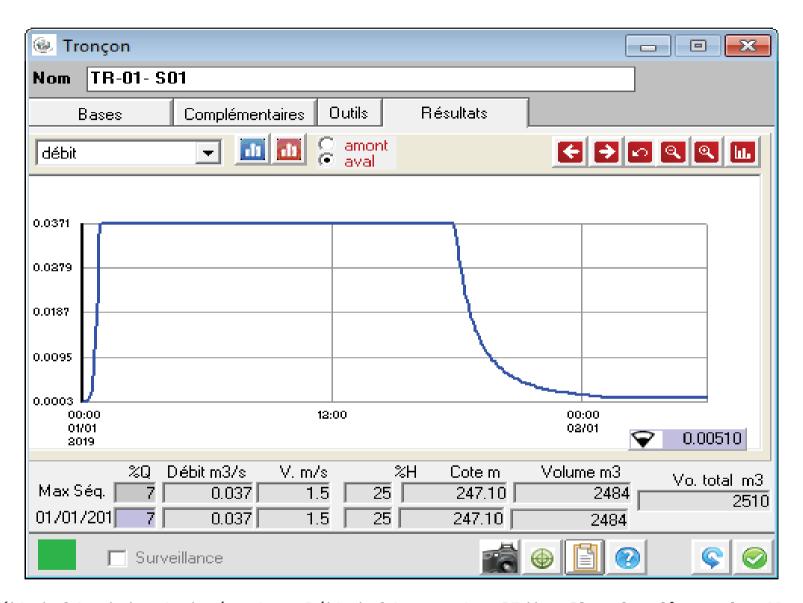

Hyétogramme de la pluie P010-015

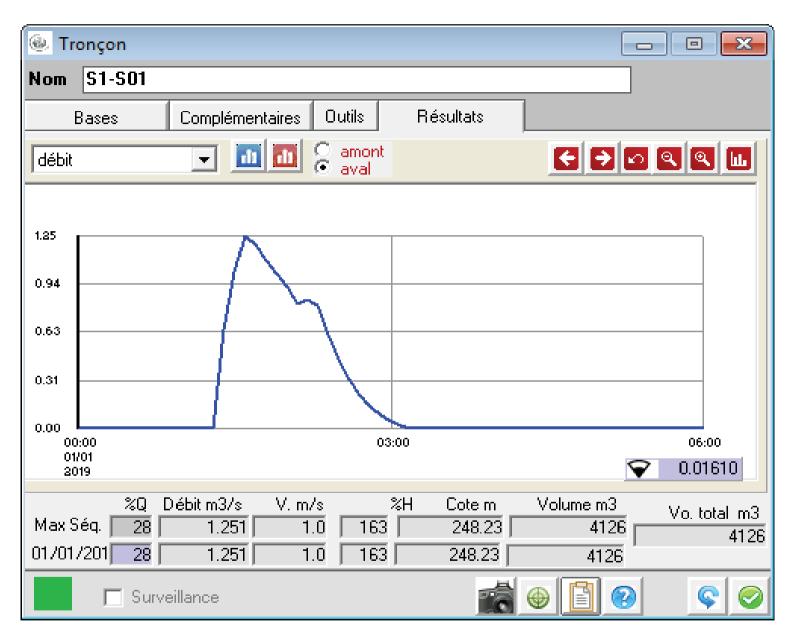
Pluie décennale - Coefficient de Montana - Carpentras (1994 - 2018) - Ajustement 6 min - 1h



Hyétogramme de la pluie P100-015


Pluie centennale - Coefficient de Montana - Carpentras (1994 - 2018) - Ajustement 6 min - 1h


Modèle réalisé - Configuration future du site - Partie Sud - Variante B

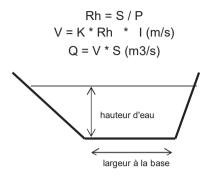

Dimensionnement du stockage (2 240 m³) – Situation décennale- Variante B

Débit de fuite du bassin de rétention – Débit de fuite en pointe 37 l/s – **Situation décennale – Var B** Temps de vidange 24 h

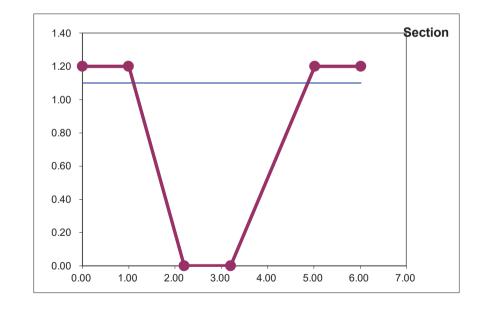
Surverse du bassin de rétention - Débit de fuite en pointe 1 250 l/s - Situation centennale - Var B

TERRESENS Annexes

3. DÉTAILS DES AMÉNAGEMENTS

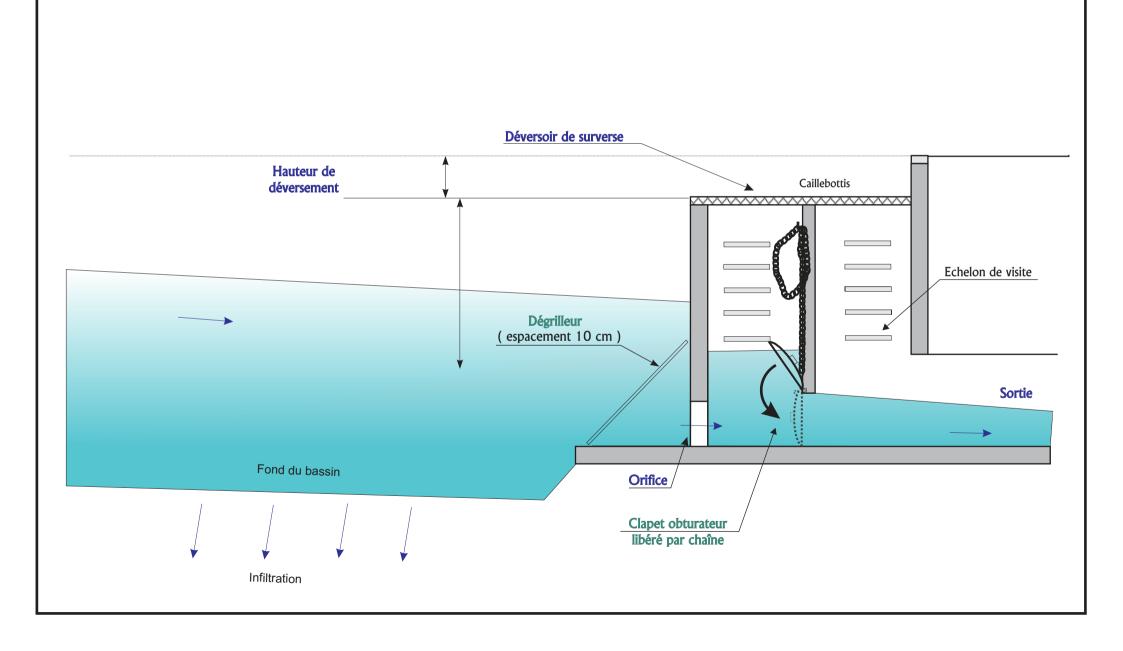

Caractéristiques du canal		
Strickler	30.00	
largeur à la base	1.00	m
pente parement gauche	100.00	%
pente parement droit	66.00	%
Hauteur utile	1.10	m
Hauteur max	1.20	m
Pente	0.0010	m/m

1.721	<- Q (m3/s)
0.657	<- V (m/s)


Largeur au miroir	3.77	m
Largeur en gueule	4.02	m

Section utile	2.62	m2/m
Section maximale	3.01	m2/m

Capacité des ouvrages
Noue



A61

Détails de la sortie - Ouvrage de rétention Schéma de principe

INGÉSURF

Le Rio 4, Plan Nega Cat 34 970 LATTES

Tel: 09 52 52 55 70

Port: 06 20 68 43 68 / 06 21 96 25 48

INGÉSURF

Société par Actions Simplifiée Capital social de 10 000 € Réf: 2020-084-P03