

Port-de-Bouc (13) Missions INFOS et DIAG selon la norme NF X 31-620

Rapport n° PR.69EN.21.0037 - 002 - 1ère diffusion - 05/07/2021

Ville de Port-de-Bouc

Etat des lieux de la qualité environnementale des sols Terrain des Aigues rue Charles Renaud Port-de-Bouc (13)

AGENCE ENVIRONNEMENT CENTRE-SUD

106 avenue Franklin Roosevelt 69120 – VAULX-EN-VELIN

2 04.74.37.68.88

environnement.lyon@fondasol.fr

SUIVI DES MODIFICATIONS ET MISES A JOUR

Le chef de projet de cette étude est : Bastien DÈCLE.

Rév.	Date	Nb pages	Modifications	Rédacteur	Vérificateur	Superviseur
				H. BRACCHI	B. DÈCLE	V. LAGNEAU
-	05/07/2021	67 + Annexes	l ^{ère} diffusion	pro-	The state of the s	VLagneary
Α						
В						
С						

A. RESUME NON TECHNIQUE

La Ville de Port-de-Bouc a souhaité réaliser un état des lieux de la qualité environnementale des sols au droit du terrain des Aigues localisé rue Charles Renaud sur la commune de Port-de-Bouc (13).

FONDASOL Environnement a donc été missionné pour la réalisation des missions INFOS et DIAG selon la norme NF X 31-620, suite à l'acceptation de notre devis référencé SQ.69EN.21.05.032 en date du 20/05/2021.

Visite de site

Une visite de site a été effectuée le 04/06/2021 ; elle a montré que le site d'étude est actuellement constitué d'un espace enherbé en friche.

Etude historique et documentaire

Au minimum depuis 1917 et jusqu'en 1955, le site est occupé par la zone d'activité de la société SAINT GOBAIN. Le site ne subit aucune modification entre 1955 et 1963 puis un bâtiment est construit en partie sud du site sur les années 1963 et 1964. En 1973, des immeubles sont construits. Ils sont démolis en 1998 dans le cadre d'un projet d'urbanisme. Depuis 1998, le site est en friche.

Le site d'étude est sur l'ancienne zone d'activité de la société SAINT GOBAIN, référencée dans la base de données BASIAS sous le numéro PAC1302700 pour la fabrication et le stockage de produits chimiques.

Etude de vulnérabilité

Au droit du site, les sols sont nus et perméables (alluvions quaternaires) donc considérés comme fortement vulnérables. Leur sensibilité est également forte compte tenu de la proximité d'une école et de l'environnement résidentiel.

Les eaux souterraines sont considérées comme fortement vulnérables et faiblement sensibles vis-à-vis d'une pollution au droit du site, compte tenu de la présence d'une nappe peu profonde et de l'absence de captages à proximité du site.

Concernant les eaux superficielles, elles sont considérées comme fortement vulnérables et sensibles compte tenu de la présence d'une zone de baignade dans le Golfe de Fos à 100 m du site.

L'absence de sites naturels sensibles proches du site conduit à les définir comme faiblement vulnérables.

Investigations sur les sols

La campagne d'investigations des sols a été réalisée le 21/06/2021 ; elle a consisté en la réalisation de 6 sondages de sols, au carottier sous gaine (GéoProbe), conduits jusqu'à des profondeurs comprises entre 1,2 et 2 m.

Les analyses de sol au niveau de ces échantillons mettent en évidence :

- la présence d'anomalies en métaux lourds (dont mercure, composé potentiellement volatil) généralisées sur l'ensemble des sondages et des profondeurs avec des teneurs remarquables en SII et SI5, et dans une moindre mesure SI3;
- la présence d'hydrocarbures avec fractions semi-volatiles dans les échantillons de SII entre 0,6 et 1,2 m et de SI3 entre 0 et 0,6 m;
- une anomalie en HAP au droit de \$15 entre 0 et 1 m de profondeur ;

B. SOMMAIRE

A.	Résu	mé non technique
В.	Som	maire
C.	Cont	exte et objectif de notre mission
D.	Prés	entation du site et du projet
	D.I.	Description générale du site
	D.2.	Projet d'aménagement
E.	Visite	e de site (A100)
	E.1.	Déroulement de la visite
	E.2.	Description de l'état actuel du site
	E.3.	Description des environs du site
F.		exte environnemental et étude de vulnerabilité des milieux (A I 20)
	F. I.	Sources d'information
	F.2.	Milieu « sol »
		.I. Contexte géologique
	F.2	.2. Occupation des sols
	F.2	3. Synthèse de la sensibilité et vulnérabilité des sols
	F.3.	Milieu « eaux souterraines »
		.1. Contexte hydrogéologique
	F.3	
		.4. Synthèse de la sensibilité et vulnérabilité des eaux souterraines
	F.4.	Milieu « eaux superficielles »
	F.4	. I. Contexte hydrologique
	F.4	.2. Usages des eaux superficielles
	F.4	3. Synthèse de la sensibilité et vulnérabilité des eaux superficielles
	F.5.	Contexte écologique - Zones naturelles protégées
	F.6.	Contexte météorologique
	F.7.	Recensement des sites potentiellement pollués autour du site
		7.1. Consultation de la base de données BASIAS
	F.8.	Consultation de la base de données SIS Bilan de la vulnérabilité et de la sensibilité des milieux
_		
G.		e historique et documentaire (AII0) Source d'informations
	G.I.	
	G.2.	Evolution du site - consultation des photographies aériennes
	G.3.	Consultation de la base de données Secteur d'Information sur les Sols (SIS)
	G.4.	Etude de la fiche BASIAS correspondant à l'adresse du site
	G.5.	Etude de la fiche BASOL présente au droit du site
	G.6.	Historique des installations classées pour la protection de l'environnement
		6.1. Consultation de la préfecture des Bouches-du-Rhône (13) et de la DREAL Prov des Côte d'Azur

C. CONTEXTE ET OBJECTIF DE NOTRE MISSION

La Ville de Port-de-Bouc a souhaité réaliser un état des lieux de la qualité environnementale des sols au droit du terrain des Aigues localisé rue Charles Renaud sur la commune de Port-de-Bouc (13).

FONDASOL Environnement a donc été missionné pour la réalisation des missions INFOS et DIAG selon la norme NF X 31-620 de décembre 2018, suite à l'acceptation de notre devis référencé SQ.69EN.21.05.032 en date du 20/05/2021.

Cette étude a pour objectif de :

- établir la présence de sources potentielles de pollution au droit du site ;
- identifier les possibilités de transfert des pollutions et les enjeux à protéger;
- définir la qualité environnementale des sols.

Dans ce cadre, notre mission comprend les prestations globales et élémentaires suivantes.

Code	Prestations globales		
INFOS	Réalisation des études historiques, documentaires et de vulnérabilité afin d'élaborer un schéma conceptuel et, le cas échéant, un programme prévisionnel d'investigation		
DIAG	Mise en œuvre d'un programme d'investigations et interprétation des résultats		
Code	Code Prestations élémentaires		
A100	Visite du site		
A110	Études historiques, documentaires et mémorielles		
A120	Etude de vulnérabilité des milieux		
A130	Elaboration d'un programme prévisionnel d'investigations		
A200			
A270	Interprétation des résultats des investigations		

D. PRESENTATION DU SITE ET DU PROJET

D.I. Description générale du site

Le propriétaire du site est la mairie de Port-de-Bouc.

Le site d'étude est localisé rue Charles Renaud sur la commune de Port-de-Bouc, dans le département des Bouches-du-Rhône (13). Il occupe une partie de la parcelle cadastrale n°1 de la section AA représentant une superficie totale de l'ordre de 4313 m².

D'après la carte IGN, le site est implanté à une altitude comprise entre +6 et +7,5 m NGF.

La topographie est globalement plane (≈ 2%).

Le site est actuellement engazonné et libre de toute occupation.

Le site est bordé :

- au nord par l'avenue du Général de Gaulle et des espaces verts ;
- au sud par un parking et une aire de jeux ;
- à l'est par la rue Charles Renaud puis une école primaire;
- à l'ouest par l'avenue du Golf et des logements collectifs.

La localisation géographique et cadastrale du site est présentée en Figure 1.

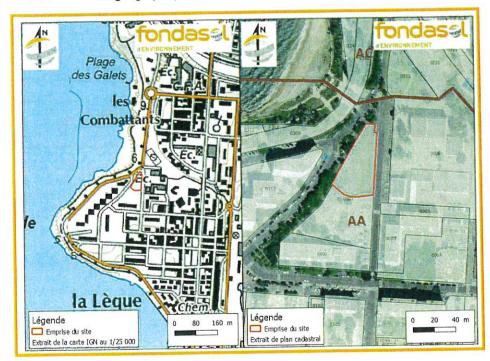


Figure 1 : Localisation géographique et cadastrale du site d'étude (Source : IGN©)

D.2. Projet d'aménagement

A ce stade, aucun projet d'aménagement n'a été défini. Notre étude est réalisée dans le cadre d'un état des lieux de la qualité des sols.

E. VISITE DE SITE (A100)

La visite du site permet de procéder à une analyse préliminaire des enjeux liés à la présence des polluants (état des lieux), de mettre en place les premiers éléments du schéma conceptuel, de décider des actions d'urgence qui pourraient s'avérer nécessaires au niveau des sources, des transferts ou des usages pour réduire les risques immédiats et organiser les actions ultérieures.

E.I. Déroulement de la visite

Une visite de site a été effectuée le 04/06/2021 par Eliès ARIKA (ingénieur d'études). L'environnement du site a également été visité dans un rayon de 200 m.

E.2. Description de l'état actuel du site

Les photographies et le compte-rendu de la visite de site sont présentés respectivement sur la Figure 3 et en Annexe 4.

Le site d'étude est constitué d'un espace enherbé en friche ; le sol est en terre végétale.

Aucun bâtiment n'est présent sur le site.

Des déchets ménagers et une zone de brûlis ont été observés au droit du site.

Les informations recueillies sont synthétisées dans le Tableau I et sur la Figure 2.

Tableau 1 : Activités et installations potentiellement polluantes identifiées lors de la visite de site

Milleux	potentiellement impactés			•		
	l ypologie de pollution suspectée	•				
Drácanca d'una converture	– Type de couverture et état	Abassa do convertire	Abselice de convei cui c	C 51.14	Absence de couverture	
	Caractéristique	,	Dechets menagers		Zone de brûlis	
	N° de photos (Figure 3)		2		80	
	N° sur la Figure 2				2	
	Zone d'étude		Torrain des	יבון מווי מכי	Aigues	2000

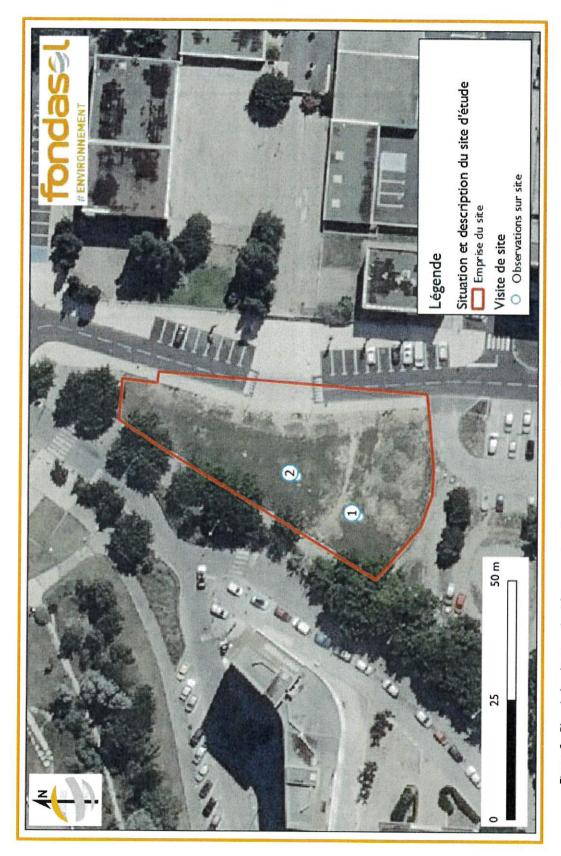


Figure 2 : Plan de localisation des bâtiments, installations et sources potentielles de pollutions recensées sur site lors de la visite de site

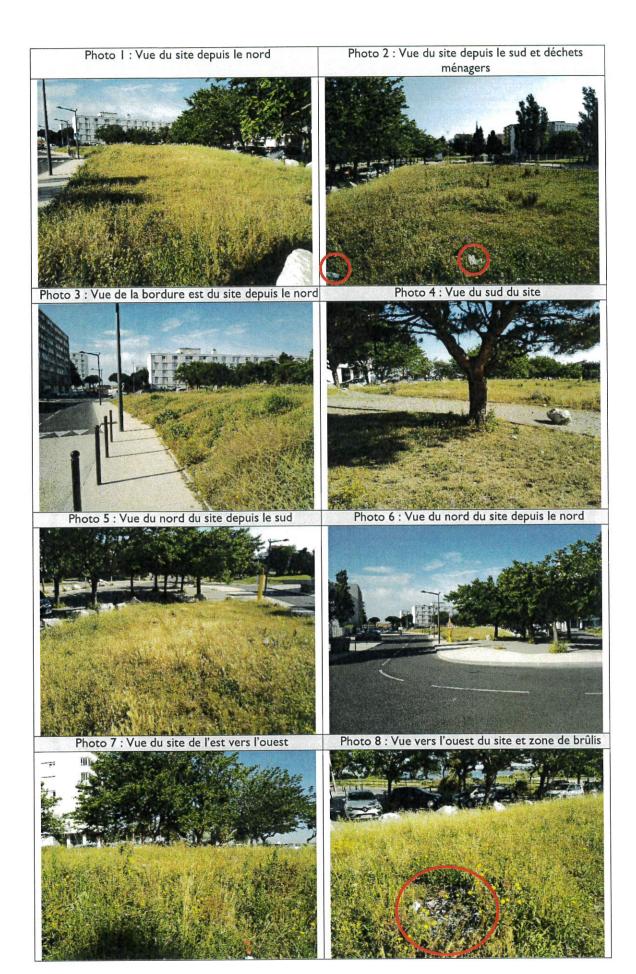


Figure 3 : Reportage photographique de la visite du site

E.3. Description des environs du site

Le site est bordé :

- au nord par des espaces verts;
- au sud par une aire de jeux et un parking puis des logements collectifs et des activités tertiaires ;
- à l'est par une école primaire, une halte-garderie et une crèche ;
- à l'ouest par des logements collectifs, des espaces verts puis une plage avec une zone de baignade.

La localisation géographique du site est présentée en Figure 4.

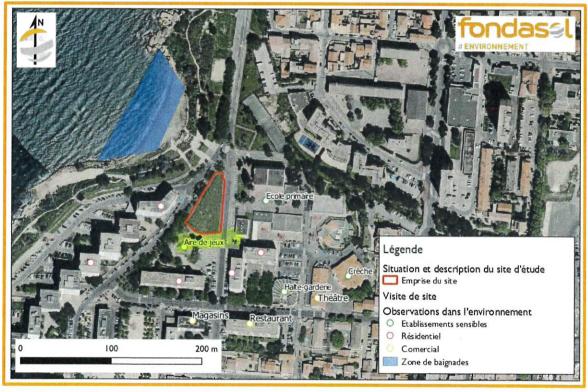


Figure 4 : Description du site dans son environnement dans un rayon de 200 m

F. CONTEXTE ENVIRONNEMENTAL ET ETUDE DE VULNERABILITE DES MILIEUX (A120)

L'étude de vulnérabilité des milieux consiste à décrire le contexte environnemental du site d'étude pour identifier les possibilités de transfert des pollutions et les usages réels des milieux concernés.

F.I. Sources d'information

Cette synthèse du contexte environnemental du site s'appuie sur la consultation :

- de la carte IGN©;
- de la carte géologique n°1019 d'ISTRES du BRGM;
- de la base de données BSS du BRGM consultable sur Infoterre ;
- de la base de données Géorisques pour les sites BASIAS, BASOL et SIS ;
- de l'Agence de l'Eau Rhône-Méditerranée (SIGES) ;
- de la base de données de l'ADES ;
- de l'Agence Régionale de la Santé de Provence Alpes Côte d'Azur ;
- de la base de données des sites de baignades du Ministère de la santé ;
- des zones de pêche référencées par la Fédération Départementale des Bouches-du-Rhône;
- de la rose des vents pour la station météorologique de la base aérienne d'Istres-Le Tubé entre 2000 et 2021 de Windfinder;
- de la base de données Climate-Data.org consultable sur internet (moyennes des données climatologiques relevées à Port-de-Bouc) ;
- de la DREAL PACA;
- des données diffusées par l'INPN.

F.2. Milieu « sol »

F.2.1. Contexte géologique

D'après la carte géologique n°1019 d'ISTRES au 1/50 000 établie par le BRGM, et des informations issues du sondage référencé dans la Banque de données du Sous-Sol n°BSS002JHVC (présenté en Figure 6) localisé à environ 360 m au nord-est de la zone d'étude, la lithologie supposée au niveau du site de la surface vers la profondeur, est la suivante :

- alluvions quaternaires jusqu'à 6 m environ ;
- formations biocalcirudite : alternance de marnes et grès avec un passage de poudingue entre 6 et 15 m de profondeur.

La Figure 5 positionne le site d'étude dans son contexte géologique local.

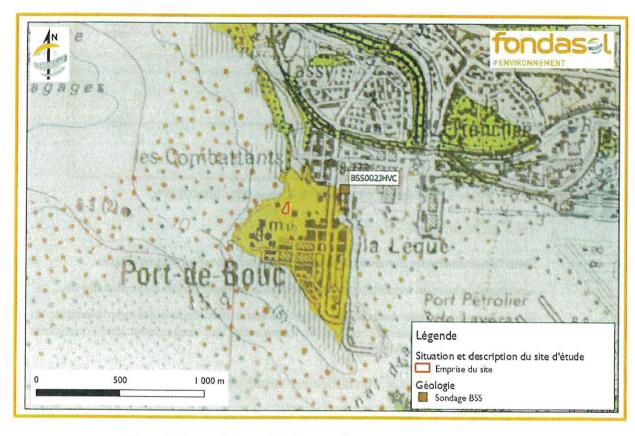


Figure 5 : Extrait de la carte géologique n° 1019 d'ISTRES (Source : BRGM)

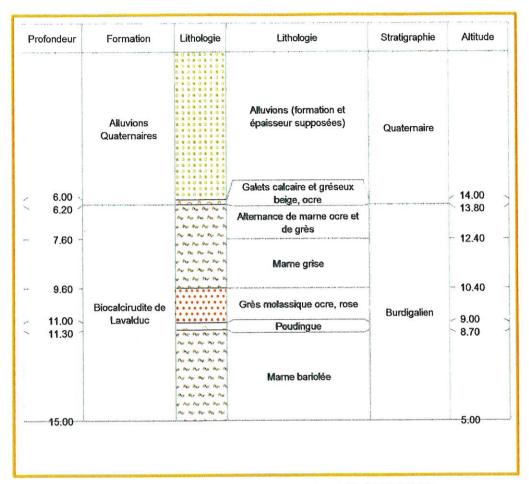


Figure 6 : Synthèse de la lithologie du sondage BSS n°BSS002JHVC

F.2.2. Occupation des sols

Dans l'environnement immédiat du site, les sols sont à usage urbain et côtier.

Les usages urbains et sensibles sont décrits dans le compte rendu de la visite de site.

Sur la base de ces informations, les usages recensés dans l'environnement immédiat du site sont de type résidentiel, scolaire et commercial. Les usages sont donc considérés comme fortement sensibles.

F.2.3. Synthèse de la sensibilité et vulnérabilité des sols

Sur la base de ces informations, les sols très perméables (alluvions quaternaires) sont considérés fortement vulnérables. Les usages des sols sont considérés comme fortement sensibles.

F.3. Milieu « eaux souterraines »

F.3.1. Contexte hydrogéologique

D'après les masses d'eaux de l'ADES, et des données disponibles sur les sites du SIGES et de l'agence de l'Eau, la principale nappe d'eaux souterraines rencontrée au droit du site est la nappe des formations gréseuses et marno-calcaires du bassin versant de la Touloubre et l'étang de Berre.

F.3.2. Description de l'aquifère

La nappe des formations gréseuses et marno-calcaires du bassin versant de la Touloubre et l'étang de Berre est contenue dans les alluvions quaternaires composées de calcaires et de grès.

Selon les descriptions des 3 puits, référencés n°BSS002JHTZ, n°BSS002JHQG et n°BSS002JHQH, en 1967 le niveau de cette nappe était aux environs de 2 à 4 m de profondeur (respectivement 3,55 m NGF, 11,98 m NGF, 15,95 m NGF).

Une étude environnementale des sols, référencée PR.69EN.20.0036, a été réalisée par FONDASOL Environnement en 2020 à Port-de-Bouc, à environ 450 m du site. Sur 3 des 6 sondages réalisés, de l'eau a été rencontrée autour de 2 m de profondeur (environ +3 m NGF). Ces niveaux d'eau pourraient correspondre au toit de la nappe.

Elle présente une grande vulnérabilité car elle est surmontée d'horizons très perméables (alluvions quaternaires) et son écoulement est libre dans notre secteur d'étude. Cette masse d'eau peut être en relation avec les eaux de la mer avoisinante.

Son sens d'écoulement théorique au droit du site se fait du nord vers le sud.

Elle est alimentée essentiellement par l'infiltration des précipitations efficaces dans les secteurs libres.

Dans la région, cette nappe est exploitée principalement pour un usage d'alimentation en eau potable et l'irrigation des particuliers.

F.3.3. Usages des eaux souterraines

D'après l'Agence Régionale de Santé (ARS) du département des Bouches-du-Rhône (13), notre secteur d'étude n'est pas concerné par un captage d'alimentation en eau potable (AEP), ni de périmètre de protection associé.

Le recensement des usages du secteur dans un rayon de 800 m a été réalisé par la consultation de la base Infoterre du BRGM et de l'ADES. Le seul captage dans les environs, référencé BSS002JJJX, est utilisé pour une pompe à chaleur. Il ne nous apporte aucune information supplémentaire. Sa localisation est présentée dans la Figure 7.

Figure 7 : Localisation des captages d'eaux souterraines dans un rayon de 800 m autour du site d'étude (Source : BRGM)

À l'examen du recensement des points d'eau du secteur, aucun captage à proximité du site n'est jugé sensible. Les premiers captages AEP sont localisés à plus de 3 km du site. Ces captages ne sont donc pas vulnérables vis-à-vis d'une pollution en provenance du site.

Par ailleurs, aucun piézométre de surveillance de la nappe n'a été identifié au droit ou à proximité du site d'étude.

Aucune information n'est disponible concernant d'autres puits de particuliers potentiellement présents à proximité du site, notamment ceux situés en aval hydraulique qui sont sensibles à une potentielle contamination des eaux souterraines. En effet, la visite des environs du site s'est effectuée en restant sur les voies publiques. Cependant, compte tenu de la proximité avec la mer, la potentielle salinité de la nappe rend peu probable l'existence de puits de particuliers.

F.3.4. Synthèse de la sensibilité et vulnérabilité des eaux souterraines

Sur la base de ces informations, les eaux souterraines sont considérées fortement vulnérables. Les usages des eaux souterraines en aval du site sont considérés comme faiblement sensibles.

F.4. Milieu « eaux superficielles »

F.4.1. Contexte hydrologique

Les masses d'eaux à proximité du site sont les suivantes :

- le Golfe de Fos à environ 100 m à l'ouest;
- le canal de navigation de Fos-sur-Mer à Port-de-Bouc à environ 850 m au nord-est;
- le chenal de Caronte à environ 500 m à l'est.

Compte tenu de leurs distances au site, les eaux superficielles sont considérées comme vulnérables à une pollution provenant du site.

F.4.2. Usages des eaux superficielles

F.4.2.1. Baignade – Activités récréatives

D'après la base de données des sites de baignades du Ministère de la santé, la commune de Port-de-Bouc présente 6 zones de baignades sur le Golfe de Fos. Les analyses menées sur ces eaux démontrent une qualité bonne à excellente de ces dernières en 2020. La Figure 8 présente les zones de baignade dans l'environnement du site. La plage identifiée à 100 m à l'ouest du site correspond au point de baignade d'Aigues Douce.

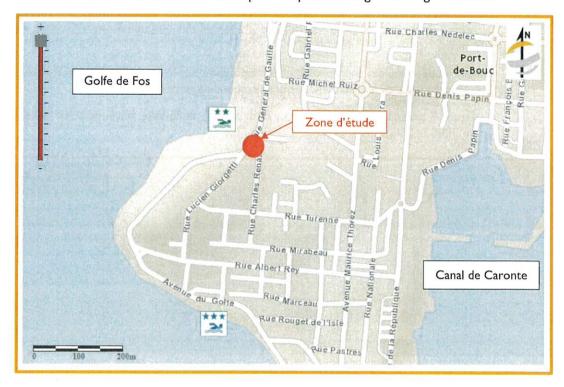


Figure 8 : Localisation des zones de baignade dans l'environnement du site (Source : Ministère chargé de la Santé)

F.4.2.2. Pêche

D'après la Fédération Départementale des Bouches-du-Rhône, aucune zone de pêche n'est recensée sur la commune de Port-de-Bouc.

F.4.2.3. Captages

D'après l'Agence Régionale de Santé (ARS) du département des Bouches-du-Rhône (13), la commune de Port-de-Bouc n'est pas concernée par un captage d'alimentation en eau potable (AEP), ni de périmètre de protection associé.

F.4.3. Synthèse de la sensibilité et vulnérabilité des eaux superficielles

Sur la base de ces informations, les eaux superficielles sont considérées fortement vulnérables. Les usages des eaux superficielles en aval du site sont considérés comme fortement sensibles (zones de baignades).

F.5. Contexte écologique - Zones naturelles protégées

Aucun site naturel de type site ZNIEFF, RAMSAR, NATURA 2000, ZICO, Parcs nationaux, Réserves naturelles ou zones concernées par un Arrêté de Protection de Biotope n'est recensé dans l'environnement de la zone d'étude (rayon de 2 km).

Le site n'a pas d'influence sur une zone naturelle protégée et n'abrite pas d'écosystème à haute valeur biologique rare, sensible ou contenant des espèces menacées à protéger.

F.6. Contexte météorologique

La ville de Port-de-Bouc bénéficie d'un climat tempéré chaud. Les précipitations sont enregistrées surtout en hiver, avec relativement peu de pluie en été. La température moyenne annuelle y est de 15,6°C. La moyenne des précipitations annuelles atteint 616 mm.

L'examen des données météorologiques disponibles sur le site WINDFINDER révèle que les vents dominants proviennent majoritairement de nord-ouest.

La Figure 9 présente la rose des vents de la station de la base aérienne d'Istres-Le Tubé entre 2000 et 2021.

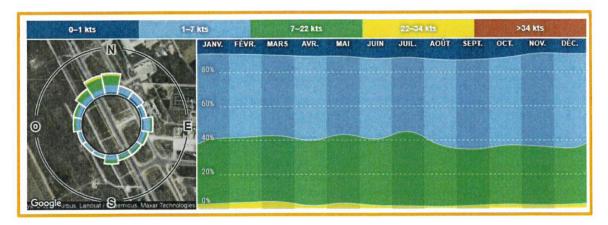


Figure 9 : Rose des vents de la station de la base aérienne d'Istres-Le Tubé entre 2000 et 2021 (Source : Météo Windfinder)

Au vu de la direction du vent dans cette zone, et de l'absence de cheminée industrielle / zone de brûlage identifiée lors de l'étude historique et de la visite de site au nord-ouest du site, une éventuelle contamination des sols du site par envol de poussières et/ou retombée de fumées est peu probable.

F.7. Recensement des sites potentiellement pollués autour du site

F.7.1. Consultation de la base de données BASIAS

La base de données Géorisques fait l'inventaire des anciens sites industriels et activités de service.

3 sites BASIAS sont référencés dans un périmètre d'environ 250 m autour du site d'étude. Ils sont présentés dans le Tableau 2 et localisés sur la Figure 10.

Tableau 2 : Inventaire des sites BASIAS recensés au droit et dans l'environnement du site (dans un rayon de 250 m)

	Exploitant et adresse du			Stockages, Utilisation de	Distance par	Position
	site	Activite du site	Etat	produits	rapport au	hydrogéologique par rapport au site ¹
1 - · · · · · · · · · · · · · · · · · ·	STE ST GOBAIN, CHAUNY ET CIREY	Manufacture des glaces et produits chimiques	Activité terminée	Fabrication de produits chimiques (produits azotés, engrais, produits chimiques organiques et autres produits chimiques) Stockage de produits chimiques (minéraux organiques, notamment ceux qui ne sont pas associés à leur fabrication,)	50 m	Aval hydrogéologíque
	M.A Lazzarino	1	Activité terminée	Dépôt de liquides	205 m	Aval hydrogéologique
	Georges Mora	Fabrication de coutellerie	En activité	initammables (U.L.I.)	230 m	Aval hydrogéologique

 $^{\mathrm{1}}$ par rapport au sens d'écoulement de la première nappe

FONDASOL – Rapport n° PR.69EN.21.0037 – 002 – 1ère diffusion – 05/07/2021 Projet de XXX – Port-de-Bouc (13) – Missions INFOS et DIAG selon la norme NF X 31-620 Au vu de la localisation des sites BASIAS référencés en aval hydrogéologique, le risque d'une contamination du site d'étude par ces activités est considéré comme négligeable.

F.7.2. Consultation de la base de données SIS

La base de données Géorisques recense les sites et sols pollués (ou potentiellement pollués) appelant une action des pouvoirs publics, à titre préventif ou curatif.

Le site n'est pas référencé dans la base de données SIS.

2 sites SIS sont présents à proximité du site d'étude dans un périmètre de 200 m. Ils sont présentés dans le Tableau 3 et localisés sur la Figure 10.

Tableau 3 : Inventaire des sites SIS recensés au droit et dans l'environnement du site (dans un rayon de 200 m)

ldentifiant	Exploitant et adresse du site	Activité du site	Impacts mis en évidence dans les différents milieux	Travaux effectuês / Situation technique du site	Distance par rapport au centre du site	Position hydrogéologique par rapport au site ²
SSP000479901	Halte-garderie Odette Menot 26 rue de Turenne	Halte-garderie	La qualité des milieux au droit du groupe scolaire a potentiellement été influencée par d'anciennes activités (ancienne fabrique de produit chimique et d'angrais BASIAS PACI 302700). Des composés volatis (BETEX, naphtalène, solvants chlorés, hydrocarbures, toluène et ammoniac) ont été quantifiés dans l'air des sols et l'air sous dalle de certains bâtiments.	Les aménagements actuels permettent de protéger les personnes des expositions aux pollutions.	110 m	Latéral hydrogéologique
SSP000480001	Creche Petit Jardin des Aigues Douces Avenue Lucien Gioretti	Crèche	La qualité des milieux au droit du groupe scolaire a potentiellement été influencée par d'anciennes activités (fabrique d'acide suffurique et des engrais BASIAS PACI 302700). Des composés volatis (BTEX, chloroforme et hydrocabures aromatiques) ont été quantifiés dans l'air des sols et l'air sous dalle de certains bâtiments.	Les aménagements actuels permettent de protéger les personnes des expositions aux pollutions.	140 m	Latéral hydrogéologique

² par rapport au sens d'écoulement de la première nappe

Au vu des éléments présentés ci-dessus le risque de contamination dû aux sites BASOL présents à proximité est considéré comme négligeable.

Figure 10: Localisation des sites BASIAS et BASOL (dans un rayon de 250 m)

F.8. Bilan de la vulnérabilité et de la sensibilité des milieux

Le Tableau 4 dresse un bilan de la vulnérabilité et la sensibilité des différents compartiments environnementaux vis-à-vis du site.

Tableau 4 : Degré de vulnérabilité et de sensibilité des milieux

Milieux	Vulnérabilité	Sensibilité
	FORTE	FORTE
Sols	Sols très perméables (alluvions quaternaires) considérés comme fortement vulnérables	Usages de type résidentiel, scolaire et commercial
	FORTE	FAIBLE
Eaux souterraines - Nappe	Nappe des alluvions peu profonde	Aucun captage n'a été recensé en aval hydrogéologique du site. Compte tenu de la proximité avec la mer, la potentielle salinité de la nappe rend peu probable l'existence de puits de particuliers.
	FORTE	FORTE
Eaux superficielles	Golfe de Fos à 100 m en latéral hydrogéologique du site	Zone de baignade
	FAIBLE	Non concernée
Zones sensibles	Le site étudié n'est pas inclus dans une zone naturelle remarquable. Aucune n'est par ailleurs présente en aval hydraulique	1

G. ETUDE HISTORIQUE ET DOCUMENTAIRE (A110)

L'étude historique a pour but de reconstituer, à travers l'histoire des pratiques industrielles et environnementales du site, d'une part les zones potentiellement polluées et d'autre part les types de polluants potentiellement présents au droit du site concerné.

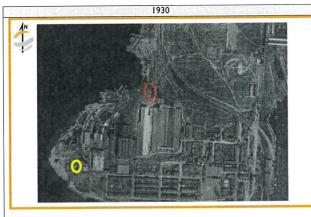
G.I. Source d'informations

Cette étude historique du site s'appuie sur :

- la consultation des bases de données BASIAS et BASOL sur Géorisques.gouv.fr ;
- la base de données des ICPE accessible sur Géorisques.gouv.fr;
- l'étude de photographies aériennes disponibles sur le site de l'IGN© ;
- l'étude de la photographie aérienne disponible sur Géoportail.gouv.fr;
- l'étude des images satellites disponibles sur GoogleEarth ;
- les informations disponibles en préfecture et aux archives départementales des Bouches-du-Rhône ;
- la base de données ARIA du BARPI ;
- des cartes postales disponibles sur le site Delcampe : https://www.delcampe.net/fr/collections/cartes-postales/

Au vu des conclusions de l'étude de vulnérabilité et de sensibilité des milieux, il apparaît que la qualité des sols au droit du site serait à investiguer.

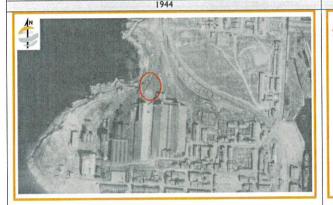
La pertinence de mettre en œuvre un programme d'investigations des eaux souterraines et/ou des eaux superficielles pourra être évaluée au regard des résultats d'investigations des sols.


G.2. Evolution du site - consultation des photographies aériennes

Les clichés consultés sont présentés dans le Tableau 5.

Tableau 5 : Liste des clichés consultés (Source : IGN©)

Date	Référence	N° cliché		
1930	C3044-0391_1930_NP5_0057	57		
1935	C3044-0381_I935_NP7_0021 21			
1938	C3044-0011_1938_F3044_0001			
1944	C3639-0051_1944_33S42_3152	3152		
1947	C3042-0011_1947_F3042-3044_0055	55		
1949	CDUR000291_1949_DUR_29_0065	65		
1952	CDUR000461_1952_DUR_46_0001			
1955	C3144-0181_1955_CDP980_0224	224		
1960	C3544-0051_1960_F3044-3544_0165	165		
1961	C2944-0031_1961_FR343_0053	53		
1963	C2944-0041_1963_FR484_0275	275		
1964	C3044-0241_1964_CDP5122_8978	8978		
1967	C3044-0071_1967_FR1289_0044	44		
1968	C3044-0021_1968_F3044-3144_0031	31		
1969	C3044-0301_1969_CDP6436_4874	4874		
1971	C3044-0082_1971_FR2167_0010	10		
1972	C3044-0101_1972_FR2204_0017	17		
1973	C3246-0151_1973_FR2490_0058	58		
1974	C3044-0041_1974_F3044-3144_0087	87		
1975	CN75000011_1975_FR2672_0048	48		
1977	CIPLI-0341_1977_FR2904_LOT_9_0787	787		
1978	C2844-0181_1978_FR9071_0375	375		
1981	C0145-2681_1981_F3-19-6_0314	314		
1982	CIPLI-0221_1982_IPLI22_0184	184		
1987	C2844-0071_1987_F2844-3044_0103	103		
1992	C92SAA1372_1992_FD13C_0310	310		
1998	CA98S00912_1998_FD13-83_0285	285		
2003	CP03000012_2003_fd1383_250_c_1878	1878		
2008	CP08000172_FD13_fx030_1751	1751		
2011	CPI1000152_FD13x25_01031	1031		
2017	Géoportail			


La synthèse des observations réalisées au droit du site et dans l'environnement proche, ainsi qu'une sélection des photographies jugées les plus représentatives de l'évolution de l'histoire du site et de son environnement, sont présentées dans la Figure 11.

Le site d'étude est implantée sur une zone industrielle et d'un faisceau de voies ferrées. Présence d'une cheminée sur a zone industrielle.

Aucun changement significatif au droit du site et sur la zone industrielle.

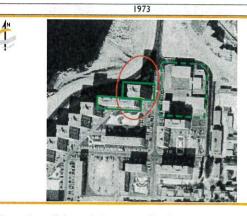
Aucun changement significatif au droit du site et sur la zone industrielle.

Aucun changement significatif au droit du site et sur la zone industrielle.

Aucun changement significatif au droit du site.

En dehors du site, sur l'industrie au sud, 2 bâtiments sur 3 sont démontés (encadrés verts).

1969



Le 3^{ème} bâtiment est démonté (encadré vert en pointillés). Une petite construction est présente au droit de la zone d'étude (encadré vert).

L'industrie est à l'abandon.

L'ancienne zone industrielle s'urbanise.

De nombreux bâtiments de logements collectifs sont construits au sud du site, dont 2 au droit du site (encadrés verts). A l'est du site, les bâtiments identifiés aujourd'hui comme le groupe scolaire sont construits (encadré vert pointillés).

Aucun changement significatif au droit du site et dans les environs. Au sud-est du site, le bâtiment identifié comme la halte-garderie est construit (encadré vert).

Aucun changement significatif au droit du site.

1998


Au droit du site, 2 bâtiments de logements sont démolis (encadrés vert). A l'ouest du site, un nouveau bâtiment de logements est construit (encadré vert tiret).

Aucun changement significatif au droit du site ; le site est dans sa configuration actuelle.

Figure 11 : Photographies aériennes (Source : IGN©)

G.3. Consultation de la base de données Secteur d'Information sur les Sols (SIS)

Le site n'est pas référencé dans la base de données SIS.

G.4. Etude de la fiche BASIAS correspondant à l'adresse du site

Suite à la consultation des archives, il a été constaté que l'ancienne activité de la société SAINT GOBAIN concerne notre site d'étude. Cette activité est référencée dans la base de données BASIAS sous le numéro PACI 302700. La fiche BASIAS est fournie en Annexe 5. Les informations récoltées sur cette fiche sont synthétisées dans le tableau ci-dessous.

Tableau 6 : Informations issues de la fiche BASIAS n°PAC1302700

Exploitant	Libellé activité	Date de début / date de fin	Régime de classification	Référence dossier
	Fabrication de produits azotés et d'engrais	01/01/1917 - inconnue		AD 13 XIV M12/296/PRODUITS CHIMIQUES
	Fabrication d'autres produits chimiques n.c.a.	01/01/1917 - inconnue		AD 13 XIV M12/296/PRODUITS CHIMIQUES
	Fabrication de produits	01/01/1953 -		AD 13 XIV
	azotés et d'engrais	inconnue		M12/420/AMMONIAC
STE ST GOBAIN, CHAUNY ET CIREY	Stockage de produits chimiques (minéraux, organiques, notamment ceux qui ne sont pas associés à leur fabrication,)	01/01/1953 - inconnue	Autorisation	AD 13 XIV M12/420/AMMONIAC
	Fabrication d'autres produits chimiques organiques de base	01/01/1955 - inconnue		AD 13 XIV M12/418/ACIDE SULFURIQUE
	Stockage de produits chimiques (minéraux, organiques, notamment ceux qui ne sont pas associés à leur fabrication,)	01/01/1955 - inconnue		AD 13 XIV M12/418/ACIDES SULFURIQUES

G.5. Etude de la fiche BASOL présente au droit du site

Le site d'étude n'est pas référencé dans la base de données BASOL.

G.6. Historique des installations classées pour la protection de l'environnement

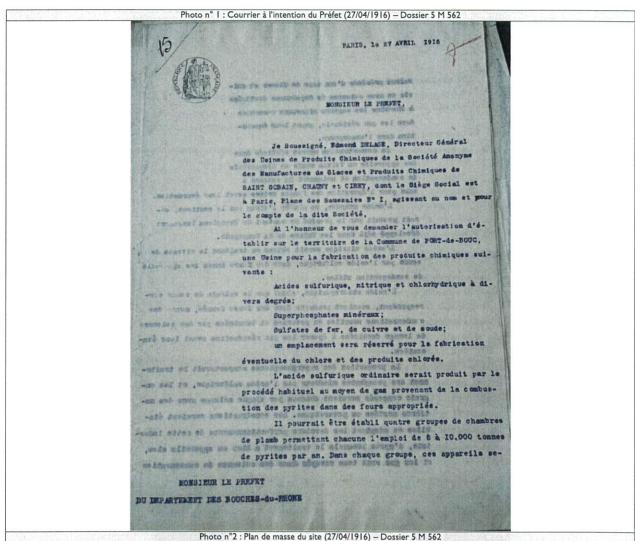
Le site n'est pas référencé dans la base de données des ICPE accessible sur https://www.georisques.gouv.fr/dossiers/installations. A noter que cela n'exclut pas le classement ICPE d'une activité au droit du site (notamment au régime de la déclaration).

G.6.1. Consultation de la préfecture des Bouches-du-Rhône (13) et de la DREAL Provence Alpes Côte d'Azur

Le service des installations classées de la préfecture des Bouches-du-Rhône (13) et la DREAL Provence Alpes Côte d'Azur ont été contacté par mail, le 01/06/2021.

Aucune réponse ne nous a été apportée à la date de rédaction de ce rapport.

G.6.2. Consultation des archives départementales et municipales


La consultation des dossiers 5 M 562, 216 W 4 et 216 W 6 présents aux archives départementales des Bouches-du-Rhône (13) a été réalisée le 16/06/2021. Un document relatif à la démolition des deux immeubles au droit du site en 1993, nous a été transmis par le service urbanisme de la mairie.

La synthèse des documents consultés est précisée dans le Tableau 7. Les consultations les plus marquantes sont présentées sur la Figure 12 et la synthèse des sources potentielles recensées lors de cette consultation en Figure 14.

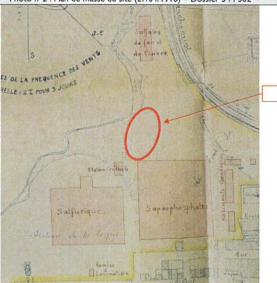

Les documents et plans retrouvés aux archives sont fournis en Annexe 6.

Tableau 7 : Informations relatives au site recueillies aux archives départementales des Bouches du Rhône (13) et auprès de la mairie de Port-de-Bouc

Date	Nature du document	Informations relatives au document
216 W 4 – Acide Sulfurique (1955)	Déclaration d'installation d'une cuve d'acide sulfurique de 60 m³ s'ajoutant à 2 réservoirs de 45 m³ déjà existants	Selon ce plan d'ensemble datant de 1952, il s'agirait d'un stockage concernant un bâtiment situé au sud-ouest de notre site (hors emprise de notre site d'étude). Le dossier de cessation d'activité n'a pas été trouvé.
Dossier 5 M 562 - 27/04/1916	Déclaration d'activité et demande d'Autorisation d'exploiter le site	Dans ce document datant du 27 avril 1916, l'exploitant déclare avoir l'intention de produire : des superphosphates minéraux, sulfates de cuivre, de fer et de soude ; du chlore et autres dérivés chlorés ; de l'acide sulfurique ordinaire via la combustion de pyrite dans des fours appropriés. Le projet mentionne la construction de chambres de plomb de capacité comprise entre 8 et 10 000 T de pyrite par an. Un plan de situation datant du 27 avril 1916 permet de localiser les bâtiments et la nature des activités qu'ils abritent. L'arrêté suivant cette demande n'a pas été trouvé. Les documents précités sont insérés ci-après en photo n°1 et 2.
Dossier 216 W 6 – 04/1953	Plan général de la société Saint-Gobain	L'emprise de la zone d'étude ne comprend aucun bâtiment industriel ou activités particulières (photo n°3).
Arrêté du Maire – 22/12/1192	Permis de démolir : Cité les Aigues Douces	Dans le cadre d'un programme de réhabilitation de l'ensemble des bâtiments de la cité des Aigues Douces à Port-de-Bouc, afin d'intégrer la cité à la ville, en y développant une véritable vie de quartier, les bâtiments A (R+15) et B (R+7) sont démolis totalement à leur place. Ces deux bâtiments se trouvaient au droit de notre site d'étude. Le bâtiment A était occupé par 63 logements HLM répartis sur un rez-de-chaussée et 15 étages, sans niveau de sous-sol. Le bâtiment B était occupé par 60 logements HLM répartis sur un rez-de-chaussée et 7 étages, sans niveau de sous-sol. Les bâtiments A et B sont présentés en photo n°4.

Secteur d'étude

En se basant sur les photographies aériennes datant de 1952 puis de 1955 (voir G.2), le site est localisé dans le secteur ici représenté par un cercle rouge. Au sud du site se trouvent des bâtiments abritant des activités de production « superphosphates » et d' « acide sulfurique » mentionnées sur la photo n°1 ci-dessus.



Figure 12 : Synthèse des documents d'archives départementales et municipales consultés

G.7. Consultation d'anciennes cartes postales

Dans le cadre de la présente étude, d'anciennes cartes postales de l'usine Saint-Gobain, vue depuis la zone de baignade d'Aigues Douces, ont été trouvées. Ces documents sont présentés en Figure 13 (le site d'étude ne figure pas sur ces cartes).

Figure 13 : Anciennes cartes postales de l'usine SAINT GOBAIN

G.8. Accidents ou incidents environnementaux

D'après la base de données ARIA gérée par le BARPI, 28 accidents environnementaux sont recensés sur la commune de Port-de-Bouc. Il s'agit de :

- fuite de produits chimiques (dichlorométhane, soude, bromure d'hydrogène, chlore, brome, chlorure de soufre, saumure, acide chlorhydrique, essence, acide bromhydrique);
- accidents de poids lourds transportant des matières dangereuses;
- explosions et incendie;
- pollution aquatique (chlore, fuel).

L'ensemble de ces accidents concerne des activités de raffinerie, d'usine chimique et de stockage d'hydrocarbures. Compte tenu de l'environnement industriel du site, il est probable que ces incidents aient influencé la qualité des sols et/ou des eaux souterraines au droit du site étudié (transport par la nappe ou ruissèlement).

G.9. Synthèse historique de l'exploitation du site

Le Tableau 8 présente la synthèse de l'historique du site.

Tableau 8 : Synthèse de l'historique de l'exploitation du site

Exploitant	Années d'exploitation	Activités / stockages / dépôts (rubrique ICPE)	Origine	Régime de classification	Date du début de l'activité	Date de fin de l'activité
STE ST GOBAIN, CHAUNY ET CIREY	1917 – entre 1955 et 1961	La zone industrielle de la société SAINT GOBAIN comprend le site à l'étude. Il s'agit de l'ancien site BASIAS PAC1302700. Le site semble abandonné à partir des années 1960. Aucune installation n'est présente au droit de la zone d'étude		Autorisation	1917	? (Environ 1960)
-	1961- 1963	Le site ne subit aucune modification.	1	NC		
	1963-1964	Un bâtiment est observable en partie sud du site. Le reste du site Saint Gobain est en cours de déconstruction	*	NC		
-	1973 -1998	Des immeubles sont construits puis détruits.	*	NC		
-	1998-2021	Le site est enherbé. Aucune activité particulière n'a été recensée sur le site.	**	NC		

-	Anciennes photographies aériennes		Documents administratifs / Archives
	Visite de site	.7	Anciens plans
	Articles de journaux		Base de données

G.10. Conclusion sur l'étude historique du site

La synthèse des informations collectées dans le cadre de l'étude historique et documentaire est présentée sur le plan en

Figure 14 et dans le Tableau 9.

Tableau 9 : Activités et installations potentiellement polluantes identifiées

Installation/activité	Profondeur des sources	Localisation sur le site	Polluants potentiels ³	Milieux potentiellement impactés
Ancienne activité industrielle de SAINT GOBAIN PAC 302700	surface	Sud du site	HT, HAP, BTEX, PCB, COHV, HV, 8 ETM, Azote NTK (NH3), Sulfates, Orthophosphates	Sols
Ancien bâtiment 1963-1964	surface	Sud du site	HT, HAP, BTEX, PCB, COHV, HV, 8 ETM, Azote NTK (NH3), Sulfates, Orthophosphates	Sols
Immeuble (1973- 1998) avec une éventuelle chaufferie	surface	Sud du site	HT, HAP, BTEX, HV	Sols

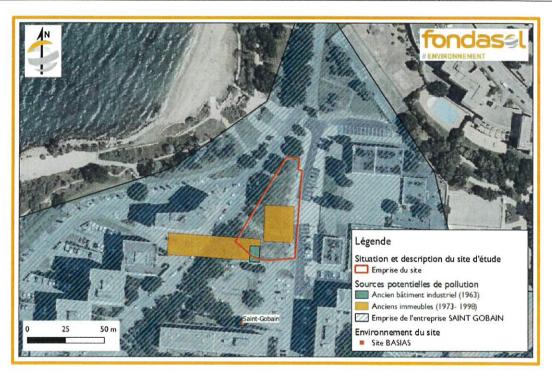


Figure 14 : Plan de synthèse des sources potentielles de pollutions recensées sur site

- 3HCT: HC: Hydrocarbures C10-C40;
- HV: Hydrocarbures volatils C5-C10;
- HAP: hydrocarbures aromatiques polycycliques (16 selon EPA);
- BTEX: hydrocarbures mono-aromatiques (benzène, toluène, éthylbenzène ou xylènes);
- COHV : composés organo-halogénés volatils ;
- PCB : polychlorobiphényles (7 congénères) ;
- 8 ETM: 8 éléments traces métalliques (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn);

H. SCHEMA CONCEPTUEL INITIAL

H.I. Rappel sur le schéma conceptuel

Le schéma conceptuel a pour objectif de définir les enjeux sanitaires et environnementaux, en illustrant les relations entre les sources potentielles de pollution, les voies de transfert, les milieux d'exposition susceptibles d'être atteints et les cibles concernées.

Véritable état des lieux du milieu ou du site considéré, le schéma conceptuel doit, d'une manière générale, permettre de préciser les relations entre :

- les sources de pollution ;
- les voies de transfert possibles, incluant les divers mécanismes de transport dans chaque milieu et leurs caractéristiques, ce qui détermine l'étendue des pollutions ;
- les récepteurs existants et/ou futurs à protéger : les populations riveraines, les usages des milieux et de l'environnement, les milieux d'exposition, et les ressources naturelles à protéger.

Si cette combinaison n'est pas réalisée, la pollution ne présente pas de risque dans la mesure où sa présence est identifiée et conservée dans les mémoires.

Les modes d'exposition peuvent être directs (ingestion de sols et de poussières, ingestion d'eau, inhalation de gaz provenant du sol ou de la nappe, ou de poussières) ou indirects (ingestion de produits de consommation susceptibles d'être eux-mêmes pollués, comme les produits du jardin).

H.2. Rappel sur le projet d'aménagement

A ce stade, aucun projet d'aménagement n'a été défini. Notre étude est réalisée dans le cadre d'un état des lieux de la qualité des sols.

H.3. Source de pollution

Les sources potentielles de pollution et les composés traceurs associés sont présentés dans le Tableau 9 ci-avant.

H.4. Récepteurs à protéger

Les récepteurs existants à protéger sont les visiteurs adultes et enfants, actuels. Il est à noter que les récepteurs à protéger seraient à reconsidérer pour tout changement de projet d'aménagement.

H.5. Voies de transfert

Au droit des zones non recouvertes (ensemble du site), les voies de transfert potentielles à considérer sont :

- la volatilisation et la remontée de vapeurs ;
- le contact direct;
- l'envol de poussières depuis les secteurs non revêtus ;
- l'emport des polluants par les eaux de ruissellement ;

- la perméation vers les canalisations d'eau potable (conduite en terrain pollué) ;
- l'infiltration / la percolation à travers la zone non saturée en eau du sol puis transfert par les eaux souterraines.

La voie de transfert potentielle hors site est la migration par les eaux souterraines et les eaux de canalisation.

Ainsi, les milieux d'exposition susceptibles d'être atteints sont les sols, les eaux souterraines et l'air ambiant.

H.6. Voies d'exposition

Au droit des zones non recouvertes (ensemble du site), les voies d'exposition potentielles pour les cibles retenues sont :

- l'inhalation de polluant sous forme gazeuse (ZNS et ZS);
- l'inhalation de polluant adsorbé sur les poussières ;
- l'ingestion de sol et de poussières.

La voie d'exposition potentielle hors site est l'inhalation de polluant sous forme gazeuse (via la nappe) et l'ingestion d'eau potable contaminée.

Le schéma conceptuel initial est présenté ci-après sous forme de matrice dans le Tableau 10.

Tableau 10 : Schéma conceptuel à l'issue de l'étude historique et documentaire

	ire		de l'absence ypologie des de pollution Iz du sollair in fonction des eur les sols	de l'absence ypologie des de pollution	des résultats is sols	<u>édiments à</u> <u>des résultats</u> <u>s sols</u>	e renu de ou activité sire	e la présence tion d'eau au estiguer en malyse sur les e réseau AEP
	Commentaire		Retenu compte tenu de l'absence de revêtement et la typologie des sources potentielles de pollution Eaux souterraines/gaz du sol/air ambiant à investiguer en fonction des résultats d'analyse sur les sols	Retenu compte tenu de l'absence de revêtement et la typologie des sources potentielles de pollution Poussières dans l'air ambiant à	investiguer en fonction des résultats d'analyse sur les sols	Eaux superficielles/sédiments à investiguer en fonction des résultats d'analyse sur les sols	Non retenu compte tenu de l'absence de potager ou activité agricole sur site	Retenu compte tenu de la présence potentielle de canalisation d'eau au droit du site <u>Eaux du robinet à investiguer en fonction des résultats d'analyse sur les sols et de la présence de réseau AEP</u>
2	Milieu d'exposition		Air ambiant	Air ambiant	Sols	Zone de baignade	Végétaux	Eaux de canalisation
	Voies d'exposition		Inhalation de polluant sous forme gazeuse (ZNS ou ZS)	Inhalation de polluant adsorbé sur les poussières	Ingestion de sol/poussières	Voir hors site	Ingestion de végétaux cultivés sur site	Ingestion d'eau contaminée
_	Commentaire	Sur site	Retenu compte tenu de l'absence de revêtement, la typologie des sources potentielles de pollution et la forte vulnérabilité des eaux souterraines	Retenu compte tenu l'absence de revêtement et la typologie des sources	potentielles de pollution	Retenu compte tenu de la vulnérabilité forte des eaux superficielles vis-à-vis du site	Non retenu compte tenu de l'absence de potager ou activité agricole sur site	Retenu compte tenu de la présence potentielle de canalisation d'eau au droit du site et de la typologie des sources potentielles de pollution
	Milieux concernés par le transfert		Sols / eaux souterraines / gaz des sols → Air ambiant	Sols superficiels → Air ambiant	Sols	Eaux de ruissellement	Sols / eaux souterraines → Eaux souterraines	Sols / gaz des sols → Eaux de canalisation
	Voies de transfert		Volatilisation	Envol de poussières		Emport des polluants par les eaux de ruissellement	Utilisation des eaux souterraines (arrosage, alimentation en eau potable)	Perméation vers les canalisations d'eau potable (conduite en terrain pollué)
	Cibles / enjeux					Visiteurs actuels enfants et adultes		
	Source de pollution			Ancien bâtiment industriel de SAINT	GOBAIN PACI 302700 (1)	Immeubles (1973-1998) (2)	Ancien bâtiment temporaire 1963-1964 (3)	

Commentaire		Retenu compte tenu de la faible profondeur de la nappe, la proximité d'une zone de baignade et la typologie des sources potentielles de pollution	Eaux superficielles/sédiments et Eaux souterraines à investiguer en fonction des résultats d'analyse sur les sols
Milieu d'exposition		Air ambiant	Eaux superficielles
Voies d'exposition		Inhalation de polluant sous forme gazeuse (via la nappe)	Ingestion d'eau contaminée (zone baignade)
Commentaire	Hors site	Retenu compte tenu de la faible profondeur de la nappe, la proximité d'une zone de baignade et la	typologie des sources potentielles de pollution
Milieux concernés par le transfert		Eaux souterraines → Air ambiant	Eaux ruissellement → Eaux superficielles
Voies de transfert		Migration par les eaux souterraines	Emport des polluants par les eaux de ruissellement
Cibles / enjeux		Résidents actuels	adultes
Source de pollution			

I. ELABORATION D'UN PROGRAMME PREVISIONNEL D'INVESTIGATIONS ET DE SURVEILLANCE DES DIFFERENTS MILIEUX (A130)

L'élaboration du programme prévisionnel d'investigations consiste à identifier ou caractériser les sources potentielles de pollution, apporter des éléments de connaissance d'un vecteur de transfert ou d'un milieu, infirmer ou confirmer certaines hypothèses du schéma conceptuel.

I.I. Contexte

I.I.I. Objectifs

L'objectif des investigations est d'établir la qualité environnementale des sols au droit du site.

1.1.2. Examen des contraintes

La contrainte identifiée au droit du site est la présence de réseaux enterrés droit du site (rendez-vous concessionnaires à planifier).

1.2. Stratégie d'investigations

La stratégie d'investigations des milieux issue des études documentaires est présentée dans le Tableau II.

Tableau II: Définition de la stratégie d'investigations

	Exame	n de la qualité des sols qui r	esteront en plac	e	
Source potentielle de pollution	Typologie de pollution suspectée	Nombre de sondages à réaliser et technique utilisée	Profondeur adaptée	Mesures in situ à réaliser	Programme analytique proposé
Ancien bâtiment industriel de SAINT GOBAIN PAC1302700 et voies ferrées	HT, HAP, BTEX, PCB, COHV, HV, 8 ETM, Azote NTK (NH3), Sulfates, Orthophosphates	2 sondages au carottier sous gaine GéoProbe	2 m	Observation des indices organoleptiques Mesures PID	HT, HAP, BTEX, PCB
Ancien bâtiment au droit du site (1963- 1964)	HT, HAP, BTEX, HV, 8 ETM, Azote NTK (NH3), Sulfates, Orthophosphates	2 sondages au carottier sous gaine GéoProbe	2 m	Observation des indices organoleptiques Mesures PID	COHV, HV 8 ETM, Azote NTK (NH3), Sulfates
Anciens immeubles (1973-1998)	HT, HAP, BTEX, HV	2 sondages au carottier sous gaine GéoProbe	2 m	Observation des indices organoleptiques Mesures PID	

Le programme analytique proposé a été étendu par rapport aux typologies de pollution suspectées dans un souci d'exhaustivité afin de pouvoir obtenir des informations sur les produits les plus communément rencontrés au droit de sites industriels et tertiaires.

Les propriétés physico-chimiques de ces composés sont présentées en Annexe 7 et les méthodes analytiques, limites de quantification et flaconnage en Annexe 8.

Le programme analytique dans les sols couvre en partie les produits les plus communément observés :

- HCT: Hydrocarbures C10-C40;
- HV: Hydrocarbures volatils C5-C10;
- HAP: hydrocarbures aromatiques polycycliques (16 selon EPA);
- BTEX : hydrocarbures mono-aromatiques (benzène, toluène, éthylbenzène ou xylènes);
- COHV: composés organo-halogénés volatils;
- PCB: polychlorobiphényles (7 congénères);
- Sulfates et Orthophosphates;
- Azote NTK;
- 8 ETM : 8 éléments traces métalliques (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn.

J. SECURISATION DES INVESTIGATIONS

Dans le but de sécuriser l'intervention vis-à-vis des réseaux enterrés, FONDASOL a lancé et traité les DICT. Les DT/DICT conjointes ont été lancées le 01/06/2021 sous le n°2021060103865D.

Le planning pour cette mission a été le suivant :

- la campagne d'investigations des sols a été réalisée 21/06/2021 par la société FONDASOL;
- les échantillons de sols sélectionnés ont été pris en charge par transporteur express le 22/06/2021 et réceptionnés par le laboratoire le 23/06/2021 ;
- les derniers résultats d'analyses ont été réceptionnés le 30/06/2021.

K. INVESTIGATIONS SUR LES SOLS (A200)

Du fait des sources potentielles de contamination des sols identifiées dans l'étude historique et documentaire, des investigations sur les sols ont été menées afin d'en caractériser la qualité environnementale.

K.I. Stratégie d'investigations sur les sols

Les investigations réalisées sur le secteur d'étude ont consisté en la réalisation de 6 sondages de sols, au carottier sous gaine (GéoProbe), conduits jusqu'à des profondeurs comprises entre 1,2 et 2 m.

La stratégie d'investigation est rappelée dans le Tableau 12. Les sondages S1 à S9 ont été réalisés dans le cadre du rapport PR.69EN.21.0037-001 spécifique à un autre site d'étude.

Tableau 12 : Stratégie d'investigations

		Enjeu		
Sondages	Source potentielle de pollution	Aménagement projeté / Objectifs	Profondeur prévisionnelle	Profondeur atteinte
\$10			2 m	1,2 m
SII	Anciens immeubles et ancienne emprise de la		2 m	2
S12	société SAINT		2 m	2 m
S13	GOBAIN et voies ferrées	Aucun projet n'est défini / Etat des lieux de la	2 m	2 m
S14		qualité environnementale des sols	2 m	2 m
\$15	Anciens immeubles / Ancienne emprise de la société SAINT GOBAIN et ancien bâtiment présent en 1963-1964		2 m	2 m

Les investigations ont été réalisées conformément au programme envisagé initialement à l'exception du sondage S10 qui n'a pu être réalisé à la profondeur prévisionnelle compte tenu de refus à l'avancement liés à la présence de blocs calcaires.

La localisation des sondages est présentée dans la Figure 15. L'ensemble de ces données de terrain a été consigné et est présenté en Annexe 9.

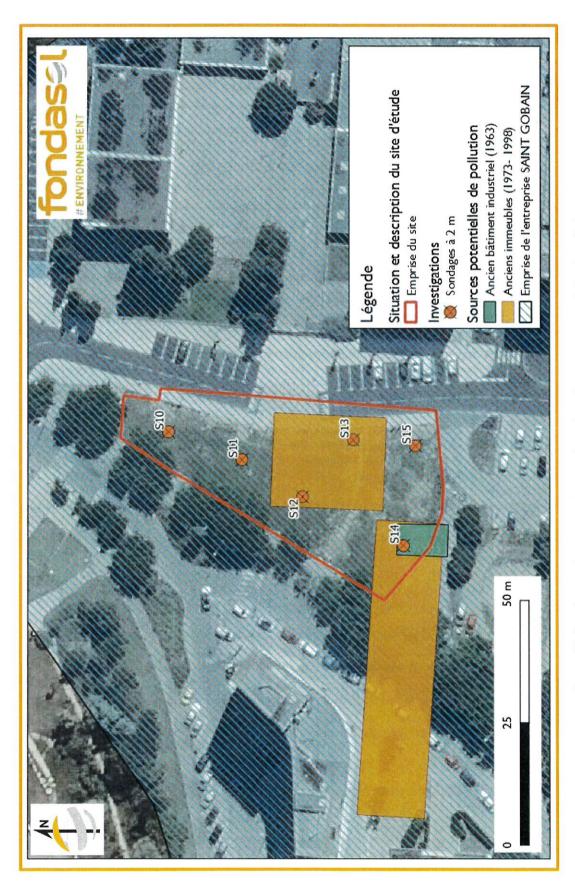


Figure 15: Localisation des investigations sur les sols et des sources potentielles de pollution

K.2. Déroulement de la campagne de prélèvements de sols

Les coordonnées géographiques des sondages sont précisées dans le Tableau 13.

Tableau 13 : Coordonnées des points de prélèvements des sondages

District descriptions	Coordonnées géographi	ques en WGS 84 : 3857
Points de prélèvement	X	Y
\$10	4.97765787	43.4040217
SII	4.97758708	43.4038857
SI2	4.97749370	43.4037732
S13	4.97763765	43.4036782
S14	4.97737015	43.4035850
S15	4.97762248	43.4035624

FONDASOL a veillé au bon état du matériel utilisé pour la réalisation des sondages et a nettoyé les outils avant et entre chaque utilisation. Les sondages ont été immédiatement rebouchés avec les cuttings de forage. Aucun matériau excédentaire n'a été observé.

Les prélèvements ont été réalisés par Eliès ARIKA, un ingénieur du Département Environnement de FONDASOL qui a procédé au relevé des coupes lithologiques et au prélèvement d'échantillons, à raison d'au moins un échantillon par mètre linéaire de terrains traversé et par faciès géologique rencontré, ou moins en cas d'identification d'indices organoleptiques. De plus, il a reporté toutes les observations utiles à la sélection des échantillons (aspect, couleur, ...) dans les fiches de prélèvement présentées en Annexe 9.

Dès leur prélèvement, les échantillons ont été conditionnés dans des flaconnages spécifiques fournis par le laboratoire, étiquetés sur site afin d'en assurer la traçabilité et stockés en atmosphère réfrigérée afin d'assurer leur bonne conservation jusqu'à leur arrivée au laboratoire d'analyses.

Les échantillons ont été analysés par le laboratoire AGROLAB, accrédité par le RvA – Raad voor Accreditatie - conformément aux critères des laboratoires d'analyses ISO/IEC 17025:2005, accréditation reconnue par le COFRAC.

K.3. Observations de terrain

De manière générale, les relevés lithologiques ont mis en évidence la présence :

- de sables graveleux sur des épaisseurs de l'ordre de 0,6 à 1 m au droit des sondages ;
- de limons sablo-graveleux jusqu'à 1,2 à 1,4 m;
- puis de sables limoneux jusqu'à 2 m (profondeur maximale des sondages);
- également de calcaires sur des profondeurs comprises entre 0,6 et 2 m.

Aucun niveau d'eau n'a été rencontré.

Le Tableau 14 ci-dessous présente une synthèse des indices organoleptiques de pollution rencontrés au droit des sondages environnementaux.

Tableau 14 : Synthèse des observations organoleptiques dans les sols

Échantillon	Observations organoleptiques	Lithologie	Mesures de terrain
SII (0,60-1,20 m)	Débris de plastique	Limons sableux marron avec graves (remblais)	0 ppm
SII (1,20-2,00 m)	Couleur noirâtre	Sables limoneux jaunes et noirâtres avec graves	0 ppm
S13 (1,40-2,00 m)	Débris de mâchefer	Sables limoneux bruns (remblais)	0 ppm
S15 (1,00-2,00 m)	Débris de briques et couleur noire	Sables et limons graveleux beiges/bruns à jaunes et noirâtres (remblais)	0 ppm

Les échantillons prélevés ont fait l'objet de mesures PID sur le terrain (appareil référencé 3ELY.A.10), afin d'évaluer le potentiel de dégazage des sols en composés organiques volatils. L'ensemble de ces mesures semi-quantitatives a mis en évidence des valeurs de 0 ppm.

K.4. Sélection des échantillons de sols

Sur la base des observations de terrain et du projet d'aménagement prévu au droit du site, 12 échantillons de sols ont été sélectionnés afin d'obtenir une caractérisation de l'ensemble des profondeurs et transmis au laboratoire pour analyses.

Ainsi, les échantillons envoyés en analyses et les paramètres recherchés sont présentés dans le Tableau 15.

Les propriétés physico-chimiques des composés recherchés sont présentées en Annexe 7 et les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé en Annexe 8.

Tableau 15 : Synthèse du programme analytique sur les sols

					Par	amètres	rechero	chés			
Sondages	Echantillons (profondeur)	HCT	λ	HAP	ВТЕХ	СОНУ	8 ETM	PCB	Orthophosphates	Sulfates	Azote Kjeldahl
S10	S10 (0,0-0,6 m)	Х	Х	Х	X	Х	Х	Х			
	SII (0,0-0,6 m)	X	X	Х	X	Х	Х	X			
SII	SII (0,6-1,2 m)	X	X	Х	X	Х	Х	X			
	SII (1,2-2,0 m)	X	X	Х	X	X	X	X	X	Х	Х
SI2	S12 (0,0-0,6 m)	X	Х	Х	Х	X	X	X			
312	S12 (0,6-1,4 m)	Х	Х	Х	Х	Х	Х	X			
S13	S13 (0,0-0,6 m)	Х	Х	Х	Х	Х	Х	X			
313	SI3 (1,4-2,0 m)	X	X	Х	X	X	Х	X	X	Х	
S14	S14 (0,0-1,0 m)	X	X	X	X	X	X	X			
314	S14 (1,2-2,0 m)	X	Х	X	X	X	X	X	Х	X	X
S15 -	S15 (0,0-1,0 m)	Х	Х	Х	Х	Х	Х	Х			
313	SI5 (1,0-2,0 m)	Х	Х	Х	Х	Х	Х	Х	Х	Х	

avec

- HCT: Hydrocarbures C10-C40;
- HV: Hydrocarbures volatils C5-C10;
- HAP: hydrocarbures aromatiques polycycliques (16 selon EPA);
- BTEX: hydrocarbures mono-aromatiques (benzène, toluène, éthylbenzène ou xylènes);
- COHV : composés organo-halogénés volatils ;
- PCB: polychlorobiphényles (7 congénères);
- 8 ETM: 8 éléments traces métalliques (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn).

K.5. Valeurs de référence pour les sols en place

Conformément à la méthodologie pour la gestion des sites et sols pollués, nous rappelons que les concentrations doivent être comparées en priorité au bruit de fond ou fond géochimique local.

Toutefois, en l'absence de données régionales, FONDASOL utilisera les données nationales issues :

 du programme ASPITET (INRA, 1994) sont utilisées pour les métaux. Les résultats et les stratégies d'interprétation sont rassemblés dans l'ouvrage de Baize D. (1997) – Teneurs totales en éléments métalliques dans les sols (INRA Editions, Paris); • la base de données BDSolU qui propose des teneurs de centile 98 pour les HAP et le naphtalène pour les zones urbaines de la France entière.

En l'absence de valeur caractérisant le bruit de fond pour les autres substances, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.

Les valeurs de comparaison retenues sont rappelées dans les premières colonnes des tableaux des résultats d'analyses.

K.6. Présentation des résultats des terres qui resteront en place

Les bordereaux d'analyses sur les sols sont présentés en Annexe 10. Le Tableau 16 présente la synthèse des résultats et la comparaison aux valeurs de références précitées.

Tableau 16 : Résultats analytiques sur les sols qui resteront en place

Echantillons			\$10 (0,0-0,6 m)	S11 (0,0-0,6 m)	S11 (0,6-1,2 m)	S11 (1,2-2,0 m)	S11 (0,6-0,6 m)	S12 (0,6-1,4 m)	Si3 (0,0-0,6 m)	S13 (1,4-2,0 m)	514 (0,0-1,0 m)	514 (i,2-2,0 m)	SIS (0,0-1,0 m)	\$15 (1,0-2,0 m)
Date de prélèvements Faciles	Unité	Bruit de fond géochimique	2) 06 202) Sables graveleux bruns	21 06 2021 Sables graveleux bruns (remblais)	21.06.202) Limons sableux marron avec graves (remblals)	Sables limoneux jaunes à noirâtres avec graves	Sables Ilmoneux beiges avec graves	21.05.2021 Limons graveleux calcaires blancs	Sables limono- graveleux bruns (remblais)	Sables Imoneux bruns (remblals)	Sables limono- graveleux bruns à beiges	Limons sablo- gravelsux marron i belges	21.06.2021 Sables limono- graveleux gris à beiges	31,06,2021 Sables et ilmons graveleux bolgos/bruns à jaunes et noiraires
Indice organoleptique					Débris de plastique	Couleur noirstre				Débris de mâchefer				(remblais) Débris de briques et couleur noire
Mesure PID			0 ppm	0 ppm	0 ppm	0 ppm	0 ppm	0 ppm	0 ppm	0 ppm	0 ppm	0 ppm	0 ppmm	0 ppm
Paramètre Madère sèche	x		96.3	97.3	91.8	93,5	97.2	97,4	96,5	95.2	98.5	92.9	94.3	87,3
Métaux Lourds	10011975	10 July 12 10 12 10 12	MEVER WHEE	Strike Albert		STEEL STREET		FEBRARIO	May A. William	CONTRACTOR	NAME OF STREET		nE. 9.30x20	SECOND CHECK
Arsenic Cadmium	mg/kg Ms mg/kg Ms	0.45	0.6	1,9	2,7	250	5.0 0.1	0,4	0,7	3,0	50 0,8	0,6	1,8	220 IS
Chrome	mg/kg Ms	90	21	24	23	35	16	15	22	23	21	14	28	91
Cuivre Mercure	mg/kg Ms mg/kg Ms	20 0.1	57 0,25	300 1,08	640	5300 1,31	14	0.06	0,39	490	0,26	0,39	320 2,69	950 2.95
Nickel	mg/kg Ms	60	18	17	17	17	18	6,4	17	19	13	12	19	2,75
Plomb Zinc	mg/kg Ms mg/kg Ms	50	48 170	270 560	310 850	1900 7200	10	15	61	340	58	120	1200	2500
Composés Organo Hajogénés Vojati		100	50 14 20	7 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / 1	200	7200	50 A 1 1 1 1 1 4 1 1 1	100	300	800	260	140	590	3600
Chlorure de Vinyle	mg/kg Ms		-374	942	632	47.57	5.6	19.19	<5.07	19.2	.49.64	+9.5a	e152	1993
Dichloromethane Trichloromethane	mg/kg Ms mg/kg Ms		1253	-5.03	4.54	446	60.91	49.57	1924	#8.55 #8.55	40.17	1595	+3.58 +3.59	15,05
Tëtrachloromëthane	mg/kg Ms		*255	*0,05	-1.65	~3.25	~ M	9.34	-0.58	60.25	<0.22	1295	55/6	55,85
Trichloroëthylène Tëtrachloroëthylène	mg/kg Ms mg/kg Ms		4955	<101 <101	40.45 40.45	67.95	-0.05	-201	1635	-0.01	61723 6463	K195	C125	e (.45).
I.I.I-Trichloroëthane	mg/kg Ms		-275	70.00	4, 05	<(3)	-5,6	*2.01	4551	46.4	-0.01	+376	< 95	205
1,1,2-Trichloroéthane 1,1-Dichloroéthane	mg/kg Ms mg/kg Ms		+358 +2,13	- CO.S.	43 88	45.10	10.05	(53).	45.55 45.10	45/5s	710	-3.43 -2.13	*155 *140	C0.55
1,2-Dichloroéthane	mg/kg Ms		-215	40.05	0.00	1-91	es)!	4625	PE-05	*101	*0.5	765	+9.95	.58
cis-1.2-Dichloroéthène 1,1-Dichloroéthylène	mg/kg Ms mg/kg Ms		+5:41 en to	-0.025 -0.10	4361	48 003 0.16	70 W.S.	96.055	45575	45 (\$1) 20 (1)	*CAS	-0,923	+1,423	15,775
Trans-1,2-Dichloroéthyléne	mg/kg Ms		*0975	10/01	-023	46.016	10.523	-514E	-2545	ms 0.15	43.034	41.025	42.021	4627
Somme cis/trans-1,2-Dichloroethylenes BTEX	mg/kg Ms		2011 100 100 100	+ 1	PERCENTING AND ADDRESS.	TOWN CONTRACTOR	A P		F-4	6.5	7.5	- 14	COL.	11.5
Benzène	mg/kg Ms		504	414	955	9.94	49.35	4971	*0.51	40.0	* 0 * 3	10.97	+0.55	- 5 5k
Toluène	mg/kg Ms		e5(t)	*C.63	IL RE	1.85	48.55	e155	KU (5)	PR (5)	Y0:03	1005	>5,65	45,45
Ethylbenzäne m.p-Xyléne	mg/kg Ms mg/kg Ms		<10	4) 15	+5,15	13.00	2,0	7-4	-619	-51s	49.22	4990 41.6	10.10	60.6
a-Xylène	mg/kg Ms		±019	<.0;	30,010	0.445	-420	-6446	15090	603	6161 0	W 518	25,015	5931
Somme Xylènes Somme BTEX	mg/kg Ms mg/kg Ms		1.4	11.8	10%	- N.C.	10.	-0	86	61	31	3,4	12	1.5
Hydrocarbures Volatijs	A PROMOTOR OF		els sixeen	Market (Carrie	drivers at	OF STREET	DATE:	es KAPTE.	2/1/50 3/1/16	WE WAS AN	solution a whe	C7 0000 C 47000		Public March
Fraction aliphatique C5-C6 Fraction aliphatique > C6-C8	mg/kg Ms mg/kg Ms		4635	- CV2	2.55	2,31	4-10 = 16	935	-9.10 +5.H	200	2015 2015	4/16	1436 2516	*231 *102
Fraction allphatique >C8-C10	mg/kg Ms		4970	<0.75	V.16	17,20	(4)(20)	-2.21	-6.36	6139	×1100	×806	1030	2.8
Fraction aromatique > C6-C8 Fraction aromatique > C8-C10	mg/kg Ms mg/kg Ms		4000 4500	<575 m12	<0.70 <0.70	*1025 *1025	-8:26 6:39	きい MAIA	-6.54 -8.59	10 (b) 10 (10	00145 0310	-155	1035 2035	53.14 3.12
Fraction C5-C10	mg/kg Ms		+45	519	K(S)	<(0	1121	Kili	14811	1.15	1.0	7.13	30 h	1.0
Fraction >C6-C8 Fraction >C8-C10	mg/kg Ms mg/kg Ms		19.49 86.45	10.40	(0,40	2.40	(E, 10)	-0.645 0.85	10 AA	X\$15	+ \$45 (h) 45	<\$140 K\$40	+0,49 1,645	75.4e
Hydrocarbures Totaux	3 Target 0.50	SEPHENDERS OF SEPHENDERS	BEARING BAY	66-365/6F P.5	and the comp	sersity-kraida	265-77-12	(Griffsdreining	SHIGH SHIP	2047-07-07-55 No.	mary mass	V6500625-706	SALVIASE.	HERMAN SAN
Hydrocarbures totaux C10-C40 Fraction C10-C12	mg/kg Ms mg/kg Ms		<0.0	53.3	73.5	F10	-301	25.8	34,7	37.2	1256	230	74,2	150
Fraction C12-C16	mg/kg Ms		15	01.0	4,8	<4.9	153	55.0	11.8	200	30	C5	140	52
Fraction C16-C20 Fraction C20-C24	mg/kg Ms mg/kg Ms		2.7	10.6	9,5	8.7	165	51.7	3.7	3,7 4.7	2.3	9.3	12.8	7,6
Fraction C24-C28	mg/kg Ms		5.1	14.5	18.1	31,2	3,3	2.0	4.5	7,6	2.7	41.0	16.8	41.4
Fraction C28-C32 Fraction C32-C36	mg/kg Ms mg/kg Ms		5.0	6,9	8,6	11,3	5,0	2.0	6.7 3,7	8,1	3.5 2,6	61.6	14 8,1	40
Fraction C36-C40	mg/kg Ms		-2.0	3,2	2,4	4,3	1.63	Sil	****	3,8	2.0	41.4	4.1	21,6 8,5
Hydrocarbures Aromatiques Polycy Acénaphtylène	mg/kg Ms	SERVICE CONTRACTOR	SIPLESCALLESS	AC 1000 PM 10.5 /c	Belliter A. 18	****	CONSTRUCTION PAR	CONTRACTOR AND AND ADDRESS OF THE PARTY OF T	Cently 2000	SOFT AND STREET, STREE	COSCILIVE WAS	STATE OF THE PARTY	AND DESIGNED	
Acénaphtène	mg/kg Ms		0,18	7/059	×3591	76.25h	20,355	Mileso.	*27/40	10.096	-0.650	-9.30W	4,990	0.052
Fluorène Pyrène	mg/kg Ms mg/kg Ms	The second second	0,17	-9 980 0,65	0,73	1,3	40.335 40.00	6-610	0,061	0,84	0,20	0,37	0,27	1.1
Benzo(b)fluoranthène	mg/kg Ms		0,10	0,85	0,28	0.57	-10C	-9.794	-3.301	0,84	0,20	0,37	1.1	0,63
Dibenzo(a.h)anthracène Anthracène	mg/kg Ms me/ke Ms		4.55	0,17	0,090	0.14	400	-0.000 -25-12	-1.84 -45.52	0.098	0.500	41.950	0,15	10:15
Anthracene Benzo(a)anthracène	mg/kg Ms mg/kg Ms		0.11	0.32	0.37	0.60	65.65	energy.	70 ES	0.46	0,11	0,056	3,3 1,4	0.16
Benzo(a)pyréne	mg/kg Ms		0.10	0.34	0,39	0,68	en;	e=145	1970	0,56	0,12	0.25	1.2	0,70
Benzo(g.h./)péryikne Benzo(k)fluoranshène	mg/kg Ms mg/kg Ms		0,071	0,23	0.25	0.45	9:352	1520	19,950 19,950	0.35	0,090	0.18	8a,0 0a,0	0.52
Chrysène	mg/kg Ms	and the second	0.11	0,31	0,36	0,57	497	55.	0,052	0,39	0,11	0.22	1,3	0.72
Fluoranthène Indéno(1,2.3-cd)pyrène	mg/kg Ms mg/kg Ms		0,23	0,64	0,75	0,44	5395 75365	*9.550 *9.550	0,077	0,97	0,19	0,38	2.8	0.54
Naphtaliene	mg/kg Ms	0.15	-1.404	25,649	2761	-N-953	45.100	4677	8-016	* 6055	-co.12	10.054	4,050	Y 0,750
Phénanthrène Somme HAP (6)	mg/kg Ms mg/kg Ms		0,18	0,48	0,48 2,14	0,98 3,85	401.	45.50	0,133	0.59 2,96	0,14	0,24	7,06	0.85 4,13
Somme HAP (VROM)	mg/kg Ms		0,870	2,91	3,27	5,57			0,185	4.03	0,878	1,79	14,4	5,91
Somme HAP (EPA) PCB	mg/kg Ms	14.7	1,32	3,85	4,37	7,44	No. Sec. of Pro-	10.00	0,246	5,34	1,19	2,42	18,2	7,64
PC8 (28)	mg/kg Ms	Name of the State of		43.07.1	21.81	*0.35	-0-91	44,704	2000 M	*0.13	-44//	-741	1,711	9:291
PCB (52) PCB (101)	mg/kg Ms mg/kg Ms		-130	0,003	0,002	0.003	#6-61 #6-71	P1 (1)	#155) #1751	0.005	4361	-4.52	(2,56)	9041
PC8 (118)	mg/kg Ms		<100	0,003	0,001	0.004	6(2)	10 (31	490)	0,005	*105	0,003	41351 41351	*2511 *651
PC8 (138)	mg/kg Ms		2160 2177	0,006	0,003	0,005	45	V561	- 4.d	0,012	*35¢	0,005	0,003	6)4502
PC8 (153) PC8 (160)	mg/kg Ms mg/kg Ms		(44)	0,002	0,002	0.002	-0.01	40,784	4125	0,013	-1001 -0771	0,004	0.002	9.001 6.011
Somme PCB (7)	mg/kg Ms		- 1	0.018	0.010	0.023		- 24	- 1	0,040		0,017	0.0080	1.0
Autres Orthophosphates (P)	mg/kg Ms		w summire of \$4		and service (Co.	1,4	111-11111111111	ener protection		114	ar design, visible	- N	Variation of the same	8.2
Sulfates (SO4) Azote Kjeldahi (NTK)	mg/kg Ms				-	17300				10600		2910		18100
	g/kg Ms			5		0,37						0.61		

K.7. Interprétation des résultats des terres qui resteront en place

Les résultats d'analyse sur les sols mettent en évidence :

- des anomalies en métaux lourds sur la totalité des sondages. A noter la présence de mercure, composé volatil, à des teneurs supérieures au bruit de fond géochimique sur tous les échantillons analysés hormis en S12. Une analyse statistique des anomalies en métaux lourds dans les sols est présentée dans le Tableau 17, page suivante. Cette analyse met en évidence que les sondages S11 et S15 présentent des teneurs anomaliques et dans une moindre mesure, le sondage S13 également. Le faciès de ces 3 points est composé de remblais présentant des indices organoleptiques;
- des quantifications en hydrocarbures totaux C₁₀-C₄₀ au droit des sondages SII, SI3, SI4 et SI5. La fraction semi-volatile C₁₀-C₁₆ n'est quantifiée qu'au droit de SII entre 0.6 et 1.2 m et de SI3 en surface;
- des teneurs en HAP sur l'ensemble des sondages à l'exception de S12. Seule la teneur en S15 dépasse le bruit de fond géochimique;
- la présence de PCB à l'état de trace au droit de SII, SI3, SI4 et SI5;
- la quantification d'orthophosphates au droit de SII et SI5;
- des teneurs significatives en sulfates (absence de valeur de comparaison) et la présence d'azote sur l'ensemble des échantillons analysés ;
- l'absence de quantification en COHV, BTEX et hydrocarbures volatils (fraction C_5 - C_{10}).

La synthèse cartographique des teneurs remarquables dans les sols est présentée dans la Figure 16.

Tableau 17 : Analyse statistique des teneurs en métaux lourds dans les sols

Echantillons	Unité	Bruit de fond S10 S11 S11 S11 S12 géochimique (0.0-0.6 m) (0.0-1.2 m) (1.2-2.0 m) (0.0-0.6 m)	S10 (0.0-0.6 m)	S11 (0.0-0.6 m)	S11 (0.6-1.2 m)	S11 (1.2-2.0 m) (S12 (0.6-1.4 m)	S13 (0.0-0.6 m)	S13 (1.4-2.0 m)	S12 S13 S14 S14 S15 S15 S15 (0.6-1.4 m) (0.0-0.6 m) (1.4-2.0 m) (0.0-1.0 m) (1.2-2.0 m) (1.0-2.0 m)	S14 (1.2-2.0 m) (S15 0.0-1.0 m)	S15 (1.0-2.0 m)	Moyenne	Médiane	Maximum	Pourcentage d'échantillons supérieurs au bruit de fond géochimique
Métaux Lourds																		
Arsenic	mg/kg Ms	25	91	57	100	250	5	43	99	180	20	24	140	220	799916.56	61.5	250	75.00%
Cadmium	mg/kg Ms	0.45	9.0	1.9	2.7	91	0.1	4.0	0.7	2	0.8	9.0	1.8	15	3.6333333	1.3	91	83.33%
Chrome	mg/kg Ms	06	21	24	23	35	91	15	22	23	21	4-	28	16	27.75	22.5	16	8.33%
Cuivre	mg/kg Ms	20	57	300	640	5300	14	53	210	490	140	100	320	950	714.5	255	2300	75.00%
Mercure	mg/kg Ms	1.0	0.25	1.08	1.95	1.31	0	90.0	0.39	0.97	0.26	0.39	2.69	2.95	1.025	89.0	2.95	91.67%
Nickel	mg/kg Ms	09	18	71	71	17	-18	6.4	17	61	13	12	61	27	16.7	17	27	0.00%
Plomb	mg/kg Ms	50	48	270	310	1900	01	15	19	340	28	120	1200	2500	569.33333	195	2500	75.00%
Zinc	mg/kg Ms	100	170	560	820	7200	40	100	300	800	260	140	290	3600	1217.5	430	7200	91.67%

Les teneurs supérieures bruit de fond géochimique sont présentées en gras dans le tableau / les valeurs des cases en jaune sont supérieures à la moyenne / les valeurs des cases en rouge correspondent aux valeurs maximales

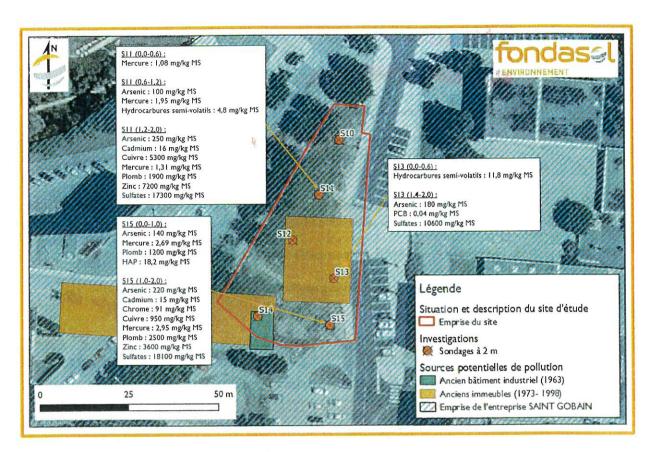


Figure 16 : Synthèse cartographique des teneurs remarquables sur les sols qui resteront en place

Nota : on entend par teneur remarquable toute teneur supérieure aux autres données sur le site (supérieure à la moyenne et au bruit de fond géochimique pour les métaux).

L. SYNTHESE DES RESULTATS

L.I. Bilan de l'état des milieux

Les investigations des sols ont montré :

- la présence d'anomalies en métaux lourds (dont mercure, composé potentiellement volatil) généralisées sur l'ensemble des sondages et des profondeurs avec des teneurs remarquables en SII et SI5, et dans une moindre mesure SI3;
- la présence d'hydrocarbures avec quantification de fractions semi-volatiles dans les échantillons SII (0,6-1,2 m) et SI3 (0,0-0,6 m);
- une anomalie en HAP au droit de \$15 entre 0 et 1 m de profondeur;
- des teneurs significatives en sulfates (absence de valeur de comparaison).
- des traces de PCB.

La répartition de ces composés est résumée dans le Tableau 18.

Tableau 18 : Synthèse des teneurs dans les différents milieux

					Famil	le de po	lluant				
Milieux investigués	Mercure	Autres métaux	COHV	BTEX	HC Cs-C16	HCT C₁₅-C₄₀	НАР	PCB	Orthophosphates	Sulfates	Azote Kjedahl
Sols (de 0 à 0,6 m)	•	•	<1.q.	<i.q< th=""><th>(SI3)</th><th>3</th><th>(S15)</th><th>*</th><th>n.a</th><th>n.a.</th><th>n.a.</th></i.q<>	(SI3)	3	(S15)	*	n.a	n.a.	n.a.
Sols (de 0,6 à 1,2 m)	•	•	<i.q< th=""><th><1.q</th><th>(SII)</th><th>٠</th><th>9</th><th>*</th><th>n.a</th><th>n a.</th><th>n.a.</th></i.q<>	<1.q	(SII)	٠	9	*	n.a	n a.	n.a.
Sols (de 1,0 à 2 m)	•	۰	<i.q< th=""><th><i.q< th=""><th><i.q< th=""><th>•</th><th>в</th><th>٩</th><th>а</th><th>•</th><th>٥</th></i.q<></th></i.q<></th></i.q<>	<i.q< th=""><th><i.q< th=""><th>•</th><th>в</th><th>٩</th><th>а</th><th>•</th><th>٥</th></i.q<></th></i.q<>	<i.q< th=""><th>•</th><th>в</th><th>٩</th><th>а</th><th>•</th><th>٥</th></i.q<>	•	в	٩	а	•	٥

^{• :} Teneur remarquable analysé

Non

Nota : on entend par teneur remarquable toute teneur sensiblement supérieure aux autres données sur le site.

[:] Quantification

I.q. : Non quantifié

n.a. :

L.2. Schéma conceptuel actualisé

L.2.1. Rappel du projet d'aménagement

A ce stade, aucun projet d'aménagement n'a été défini. Notre étude est réalisée dans le cadre d'un état des lieux de la qualité des sols.

L.2.2. Source de pollution

Les sources potentielles de pollution et les composés traceurs associés sont les suivantes :

- · anomalies généralisées en métaux lourds ;
- teneurs significatives en HAP et sulfates ;
- traces d'hydrocarbures et PCB.

L.2.3. Récepteurs à protéger

Les récepteurs existants à protéger sont les visiteurs adultes et enfants, actuels. Il est à noter que les récepteurs à protéger seraient à reconsidérer pour tout changement de projet d'aménagement.

L.2.4. Voies de transfert

Au droit des zones non recouvertes (ensemble du site), les voies de transfert potentielles à considérer sont :

- la volatilisation et la remontée de vapeurs ;
- le contact direct;
- l'envol de poussières depuis les secteurs non revêtus ;
- l'emport des polluants par les eaux de ruissellement ;
- la perméation vers les canalisations d'eau potable (conduite en terrain pollué) ;
- l'infiltration / la percolation à travers la zone non saturée en eau du sol puis transfert par les eaux souterraines.

La voie de transfert potentielle hors site est la migration par les eaux souterraines et les eaux de canalisation.

Ainsi, les milieux d'exposition susceptibles d'être atteints sont les sols, les eaux souterraines et l'air ambiant.

L.2.5. Voies d'exposition

Au droit des zones non recouvertes (ensemble du site), les voies d'exposition potentielles pour les cibles retenues sont :

- l'inhalation de polluant sous forme gazeuse (ZNS et/ou ZS);
- l'inhalation de polluant adsorbé sur les poussières ;
- l'ingestion de sol et de poussières.

La voie d'exposition potentielle hors site est l'inhalation de polluant sous forme gazeuse (via la nappe) et l'ingestion d'eau potable contaminée.

L.2.6. Représentation graphique du schéma conceptuel actualisé

Le schéma conceptuel actualisé du site mettant en corrélation les sources de pollution, les milieux de transfert et les cibles est présenté dans le Tableau 19.

Tableau 19 : Schéma conceptuel mis à jour à l'issue du diagnostic

Commentaire	Retenu compte tenu de l'absence de revêtement et la présence de mercure (composé potentiellement volatil) et d'hydrocarbures dans les sols A vérifier par la réalisation d'investigations	Retenu compte tenu du revêtement d'herbe (limitant mais n'empêchant pas l'envol de poussières) et des teneurs mises en	évidence dans les sols. A vérifier par la réalisation d'investigations complémentaires	A vérifier par la réalisation d'investigations complémentaires
Milieu d'exposition	Air ambiant	Air ambiant	Sols	Zone de baignade
Voies d'exposition	Sur site Inhalation de polluant sous forme gazeuse (ZNS ou ZS)	Inhalation de polluant adsorbé sur les poussières	Ingestion de sol/poussières	Voir hors site
Milieux concernés par le transfert	Sols / eaux souterraines / gaz des sols → Air ambiant	Sols superficiels → Air ambiant	Sols	Eaux de ruissellement
Voies de transfert	Volatilisation		Envol de poussières	Emport des polluants par les eaux de ruissellement
Cibles / enjeux		Visiteurs actuels enfants et adultes		
Source de pollution	Anomalies généralisées en métaux lourds ;	Teneurs significatives en HAP et sulfates ;	Traces d'hydrocarbures et PCB.	

Commentaire	Non retenu compte tenu de l'absence de potager ou activité agricole sur site	Retenu compte tenu de la présence potentielle de canalisation d'eau au droit du site et des teneurs en hydrocarbures et en mercure (composé potentiellement volatil) mises en évidence dans les sols A vérifier dans un second temps en fonction des résultats dans les gaz des sols		Retenu compte tenu de la faible profondeur de la nappe, de la proximité d'une zone de baignade et des teneurs en métaux lourds mises en évidence	dans les sols A vérifier par la réalisation d'investigations complémentaires
Milieu d'exposition	Végétaux	Eaux de canalisation		Air ambiant	Eaux superficielles
Voies d'exposition	Ingestion de végétaux cultivés sur site	Ingestion d'eau contaminée	Hors site	Inhalation de polluant sous forme gazeuse (via la nappe)	Ingestion d'eau contaminée (zone baignade)
Milieux concernés par le transfert	Sols / eaux souterraines → Eaux souterraines	Sols / gaz des sols → Eaux de canalisation		Eaux souterraines → Air ambiant	Eaux ruissellement → Eaux superficielles
Voies de transfert	Utilisation des eaux souterraines (arrosage, alimentation en eau potable)	Perméation vers les canalisations d'eau potable (conduite en terrain pollué)		Migration par les eaux souterraines	Emport des polluants par les eaux de ruissellement
Cibles / enjeux				Résidents actuels enfants et	adultes
Source de pollution					

M. RESUME TECHNIQUE ET CONCLUSIONS

Client	Ville de Port-de-Bouc		
COLUMN TO A RESIDENCE AND A STATE OF THE STA	Désignation usuelle du site	Terrain des Aigues	
	Adresse	rue Charles Renaud à Port-de-Bouc	
Périmètre d'étude	Parcelles cadastrales	parcelle n° I section AA	
	Surface approximative	4313 m²	
	Altitude moyenne du site	entre +6 et +7,5 m NGF	
Contexte de l'étude	Cette étude est réalisée da	ns le cadre d'un état des lieux de la qualité des sols.	
Synthèse des données disponibles et acquises dans le cadre de cette étude			
ALOO Visites du sito	 Visite effectuée le 04/06/2021 par Eliès ARIKA; 		
A100 – Visite du site	 Le site est constitué d'un 	n espace enherbé en friche.	
A110 Étude historique	Consultation des photographies aériennes Consultation des bases de	 De 1917 à 1955 : site industriel de la société SAINT GOBAIN ; Entre 1955 et 1961 : déconstruction du site SAINT GOBAIN De 1955 à 1963 : aucune modification ; De 1963 à 1964 : bâtiment temporaire en partie sud du site ; De 1973 à 1998 : immeubles construits puis détruits ; Depuis 1998 : site en friche. Le site d'étude est référencé dans la base de données BASIAS sous le numéro PAC1302700 pour la 	
	données BASIAS, BASOL et des installations classées	fabrication et le stockage de produits chimiques par la société SAINT GOBAIN. La consultation des dossiers dossier 5 M 562, 216 W 4 et 216 W 6 présents aux archives départementales des Bouches-du-Rhône (13) a été réalisée le 16/06/2021 : L'emprise de la zone d'étude ne comprend aucun bâtiment industriel ou activités particulières ;	
	Consultation des archives (préfecture, département, commune)	 Au sud du site se trouvent des bâtiments abritant des activités de production « superphosphates » et d'« acide sulfurique ». D'après le permis de démolir transmis par la mairie de Port-de-Bouc, entre 1992 et 1998, les immeubles sont détruits dans le cadre d'un projet d'urbanisme. Ces bâtiments ne présentaient pas de niveau de sous-sol. 	
A120 Étude de vulnérabilité des milieux	Géologie	Sols très perméables (alluvions quaternaires). Vulnérabilité forte Sensibilité forte	
	Hydrogéologie	Nappe des formations gréseuses et marno- calcaires du bassin versant de la Touloubre et l'étang de Berre contenue dans les alluvions et peu profonde. Vulnérabilité forte Sensibilité faible	
	Hydrologie	Golfe de Fos à 100 m à l'ouest, en latéral hydrologique du site. Vulnérabilité forte Sensibilité forte Le Sensibilité forte Output De la control ou l'acceptance de la control o	
	Zones naturelles	Aucune zone naturelle remarquable sur site et en aval hydraulique. Vulnérabilité faible Sensibilité forte	

A200 Diagnostic des sols	La campagne d'investigations des sols a été réalisée le 21/06/2021. Elle a consisté en la réalisation de 6 sondages de sols, au carottier sous gaine (GéoProbe), conduits jusqu'à des profondeurs comprises entre 1,2 et 2 m.	
A270 Interprétation des résultats	Sols	 Les investigations des sols ont montré: la présence d'anomalies en métaux lourds (dont mercure, composé potentiellement volatil) généralisées sur l'ensemble des sondages et des profondeurs avec des teneurs remarquables en SII et SI5, et dans une moindre mesure SI3; la présence d'hydrocarbures avec quantification de fractions semi-volatiles dans les échantillons SII (0,6-I,2 m) et SI3 (0,0-0,6 m); une anomalie en HAP au droit de SI5 entre 0 et I m de profondeur; des teneurs significatives en sulfates (absence de valeur de comparaison). des traces de PCB.
Schéma conceptuel	Synthèse des risques retenus	 Inhalation et ingestion de polluant par volatilisation et envol de poussières; Ingestion d'eau contaminée par perméation des composés volatils vers les canalisations d'eau potable et emport des polluants par les eaux de ruissellement vers la zone de baignade à proximité.