

PORT-DE-BOUC (13) **Diagnostic complémentaire du milieu souterrain**

Rapport n° PR.69EN.22.0018 - 001 - 1ère diffusion - 31/10/2022

Commune de Port-de-Bouc

Aménagement d'espaces verts Place des Aigues Douces – Rue de Turenne Port-de-Bouc (13)

AGENCE ENVIRONNEMENT CENTRE-SUD

106 avenue Franklin Roosevelt 69120 – VAULX-EN-VELIN

2 04.74.37.68.88

"d environnement.lyon@fondasol.fr

SUIVI DES MODIFICATIONS ET MISES A JOUR

Le chef de projet de cette étude est : Véronique LAGNEAU.

Rév.	Date	Nb pages	Modifications	Rédacteur	Vérificateur	Superviseur
-	31/10/2022	65 + annexes	l ^{ère} diffusion	Elies ARIKA	Véronique LAGNEAU	Cindy DELCAMBRE
Α						
В						
С						

RESUME NON TECHNIQUE

Dans le cadre du réaménagement de la place des Aigues Douces en espaces verts communaux, la commune de Port-de-Bouc a souhaité réaliser un diagnostic complémentaire des milieux au droit du site localisé sur la commune de Port-de Bouc.

FONDASOL Environnement a donc été missionné pour la réalisation d'investigations complémentaires de la qualité environnementale des sols, des eaux souterraines, des gaz des sols et de l'air ambiant suite au premier diagnostic environnemental réalisé lors de l'étude PR.69EN.21.0037 – Pièce n°001 en juillet 2021.

L'étude précédente avais mis en évidence la présence de divers impacts en métaux au droit du site ainsi que la présence de divers composés organiques dont des hydrocarbures. Ces impacts sont en lien avec l'activité industrielle historique de la société Saint-Gobain.

Les investigations complémentaires au droit des sols ont consisté en la réalisation de plusieurs prélèvements de sols autour des anomalies déjà observés. Les résultats d'analyses confirment les fortes teneurs en métaux et notamment en mercure.

Les investigations sur les eaux souterraines (réseau de 3 ouvrages captant la nappe) ont mis en évidence la présence de tétrachloroéthylène et d'hydrocarbures à l'état de traces.

La réalisation des prélèvements des gaz des sols au droit de 6 ouvrages a permis d'identifier l'absence de dégradation de la qualité des gaz du sol, et donc l'absence de dégazage depuis les sols et/ou les eaux souterraines.

Le même constat a été réalisé suite aux investigations menées sur l'air ambiant.

Ainsi, la pollution en métaux lourds contenue dans les remblais est circonscrite à ce milieu.

Compte tenu des risques d'inhalation et d'ingestion encore présents sur le site, FONDASOL réitère sa recommandation sur la mise en sécurité immédiate du site avec mise en place de clôtures afin d'empêcher les usages au droit du site.

Pour rappel, les concentrations en composés volatils dans les gaz du sol sont la résultante d'un grand nombre de facteurs tant environnementaux (nature, position et concentration dans les sources présentes en zone saturées et/ou en zones non saturées), que météorologiques (pression atmosphérique, précipitations, température, etc.) ou encore architecturaux (zone avec revêtement ou non, présence d'un bâtiment, tirage thermique, etc.).

C'est pourquoi, le guide méthodologique FLUXOBAT, recommande la réalisation de 2 campagnes de mesures de gaz du sol minimum sur deux périodes contrastées (été et hiver par exemple), voire 3 campagnes en cas de résultats divergents.

En l'absence d'information sur la présence potentielle de réseaux d'eaux, il est recommandé d'écarter tout risque de contamination de l'eau de robinet via la perméation des polluants vers les canalisations d'eau potable (conduite en terrain pollué) en réalisant comme préconisé lors de l'étude précédente :

- soit des recherches de réseaux enterrés afin de confirmer l'absence dans les sols de réseaux AEP,
- soit la réalisation de prélèvements d'eaux du robinet, afin d'évaluer la qualité de ce milieu.

Compte tenu de la présence dans les sols de fortes anomalies en métaux lourds dont mercure, FONDASOL Environnement recommande :

- la réalisation d'un plan de gestion afin de déterminer les moyens de gestion des zones de pollution concentrée ;
- la réalisation d'une analyse des risques résiduels (ARR) qui permettra de valider la compatibilité entre les teneurs résiduelles après la mise en œuvre des mesures de gestion et le projet.

Compte tenu des anomalies en métaux observées dans les sols superficiels du site, les terrains qui ne seront pas géré devront être recouverts de remblais sains en surface ou minéralisés (asphalte ou autre type de revêtement).

Au vu des résultats analytiques, les terres à évacuer dans le cadre de leur potentielle gestion devront être prises en charge en ISDI, ISDI+, ISDND ou Biocentre.

Dans le cadre de ces évacuations, il conviendra de réaliser un certificat d'acceptation préalable (CAP) auprès du centre repreneur des terres en amont des travaux (hors ISDI). Ceux-ci devront être réalisés selon la réglementation en vigueur.

Le maintien d'anomalies résiduelles dans les sols du site nécessiterait de mettre en place des mesures de conservation de la mémoire du site (à travers les actes de vente, le livre foncier, le POS ou PLU de la commune...).

En cas de changement du projet d'aménagement, ces recommandations seraient à réévaluer.

RESUME TECHNIQUE

Client	Commune de Port-de-Bouc			
	Désignation usuelle du site Place des Aigues Douces			
	Adresse	Rue de Turenne à Port-De-Bouc		
Périmètre d'étude	Parcelles cadastrales	n°104 de la section AA		
	Surface approximative	5900 m²		
	Altitude moyenne du site	+ 7 m NGF		
Contexte de l'étude	Cette étude est réalisée dan	s le cadre de l'aménagement d'un espace vert public.		
	Synthèse des donnée	s acquises dans le cadre de cette étude		
A200				
Diagnostic des sols A260	 La campagne complémentaire d'investigations des sols a été réalisée le 12/04/2022. 10 sondages ont été réalisés à la tarière mécanique à une profondeur maximale de 2 m. 			
Diagnostic des terres à				
excaver				
A210	Réseau piézométrique			
Diagnostic des eaux		é à environ 7 m de profondeur en avril 2022 (un des piézomètres était		
souterraines A230	cependant à sec).			
Diagnostic des gaz du	•	épartis au droit des anomalies observées dans les sols,		
sol		e 14/04/2022, dans des conditions peu favorables.		
A240	•	mbiant ont été réalisés en extérieur (ensemble du site).		
Diagnostic de l'air ambiant		stallé à environ I m de hauteur (voies respiratoires des enfants) é installés à 1,5 m de hauteur du sol (voies respiratoires des adultes)		
ambiant	Z prelevements ont etc.	e installes à 1,5 fil de flauteur du soi (voies respiratoires des adultes)		
		Les investigations des sols ont :		
	Sols			
		 confirmé les fortes anomalies en métaux généralisées en partie nord du site (ancienne chambre à plomb), dont en mercure, 		
		 mis en évidence la présence d'anomalies en HAP et naphtalène, 		
		• quantifié la présence d'HC C12-C40 et de traces en PCB.		
	Terres à excaver	Les analyses ont mis en évidence la présence de dépassements de		
A270		certains critères de l'arrêté du 12 décembre 2014 relatif aux Installations		
Interprétation des		de Stockage de Déchets Inertes (ISDI) : 4 filières de prises en charges		
résultats		des terres ont été retenues : ISDI, ISDI +, ISDND et Biocentre.		
	Eaux souterraines	Présence de tétrachloroéthylène et d'hydrocarbures à l'état de traces.		
	Laux Souterraines	Tresence de tetracinoroeurpiene et d'hydrocarbures à retat de traces.		
		Dépassement de la borne R1 en benzène au droit de Pa4. Après prise		
	Gaz du sol	en compte du facteur d'atténuation, les teneurs estimées dans l'air		
	Gaz du soi	ambiant seraient inférieures à la borne RI ; ce composé ne pose pas de		
		problématique sanitaire en l'état.		
	A			
	Air ambiant	Absence de dépassements des bornes R1 pour chaque composé analysé.		
		Inhalation de polluants sous forme gazeuse,		
Schéma conceptuel	Synthèse des risques	Inhalation de polluants adsorbés sur les poussières,		
	retenus	Ingestion de sols et poussières, Ingestion d'oaux des capalisations		
	Réalisation d'un plan de la de	Ingestion d'eaux des canalisations. e gestion pour gérer les fortes anomalies en métaux et HAP.		
D	Réalisation d'une ARR.			
Recommandations	• Réalisation d'investigations sur la qualité de l'eau du robinet dans le cas où une canalisation d'eau			
	potable passerait au dr	oit du site.		

SOMMAIRE

A.	Con	texte et objectif de notre mission	_ 10		
В.	Prés	Présentation du site et du projet			
	B.1.	Description générale du site	_ 11		
	B.2.	Projet d'aménagement	_ 12		
C.	Synt	hèse des études antérieures	_ 13		
D.	Sécu	risation des investigations et déroulement des investigations	_ 16		
E.	Investigations sur les sols et les terres à excaver (A200 et A260)				
	E.I.	Rappel du contexte et objectifs des prélèvements de sols	_ 17		
	E.2.	Stratégie d'investigations sur les sols	_ 17		
	E.3.	Déroulement de la campagne de sol	_ 19		
	E.4.	Observations de terrain			
	E.5.	Sélection des échantillons de sols			
	E.6.	Valeurs de référence pour les sols en place	_ 22		
	E.7.	Valeurs de référence pour la gestion des terres excavées			
	E.8.	Présentation des résultats des terres qui resteront en place	_ 22		
	E.9.	Interprétation des résultats des terres qui resteront en place			
	E.10. excav	Présentation des résultats des terres excavées pouvant éventuellement être	31		
	E.II. proje	Interprétation des résultats des terres qui seront excavées dans le cadre du			
F.	Inve	stigations sur les eaux souterraines (A210)	_ 35		
	F.1.	Rappel du contexte et objectifs des prélèvements des eaux souterraines	_ 35		
	F.2.	Pose des ouvrages / renforcement du réseau piézométrique	_ 35		
	F.3.	Définition du réseau piézométrique	_ 35		
	F.4.	Déroulement de la campagne de prélèvements des eaux souterraines	_ 38		
	F.5.	Programme analytique sur les eaux souterraines	_ 38		
	F.6.	Valeurs de référence pour les eaux souterraines	_ 39		
	F.7.	Présentation des résultats des eaux souterraines			
	F.8.	Interprétation des résultats sur les eaux souterraines			
G.	Inve	stigations sur les gaz du sol (A230)			
	G.I.	Rappel du contexte et objectifs des prélèvements sur les gaz du sol	_ 42		
	G.2.	Stratégie d'investigations sur les gaz du sol			
	G.3.	Conditions météorologiques			
	G.4.	Programme analytique sur les gaz du sol			
	G.5.	Valeurs de référence pour les gaz du sol			
	G.6.	Présentation des résultats sur les gaz du sol			

	G.7.	Interprétation des résultats sur les gaz du sol	47		
Н.	Inve	stigations sur l'air ambiant (A240)	49		
	H.I.	Rappel du contexte et objectifs des prélèvements sur l'air ambiant	49		
	H.2.	Stratégie d'investigations sur l'air ambiant – Méthode par prélèvements passifs	49		
	H.3.	Stratégie d'investigations sur l'air ambiant – méthode par prélèvements actifs_	49		
	H.4.	Conditions météorologiques	51		
	H.5.	Programme analytique sur l'air ambiant	51		
	H.6.	Valeurs de référence pour l'air ambiant	52		
	H.7.	Présentation des résultats sur l'air ambiant	53		
	H.8.	Interprétation des résultats sur l'air ambiant	53		
I.	Synt	Synthèse des résultats			
	1.1.	Synthèse cartographique	54		
	1.2.	Bilan de l'état des milieux	54		
	1.3.	Schéma conceptuel actualisé	56		
J.	Con	clusion et recommandations	59		
	J.I.	Conclusions	59		
	J.2.	Recommandations	59		
K.	Limi	tes de la méthode	61		
	K.I.	Etude documentaire	61		
	K.2.	Investigations			
	K.3.	Gestion d'une pollution identifiée	62		
1.	Ann	PX66	63		

TABLE DES ANNEXES

Annexe 16 : Bordereaux d'analyses des essais de laboratoire sur l'air ambiant

TABLE DES FIGURES

Figure 1: Localisation géographique et cadastrale du site d'étude (source : IGN©)	П
Figure 2 : Plan de masse du projet d'aménagement (source : Esquisse I en date du 05/05/2022)	12
Figure 3 : Synthèse cartographique des teneurs remarquables en métaux lourds sur les sols qui resteront en place	15
Figure 4 : Localisation des investigations sur les sols et des sources potentielles de pollution	18
Figure 5 : Synthèse cartographique des teneurs remarquables sur les sols qui resteront en place :	: 30
Figure 6 : Synthèse cartographique des résultats d'analyses sur les terres pouvant être excavées :	34
Figure 7 : Plan de localisation des piézomètres sur carte topographique au 1/25 000	37
Figure 8 : Localisation des piézairs et des sources potentielles de pollution	43
Figure 9 : Dispositif de prélèvement des gaz du sol (extrait du rapport BRGM RP-65876 FR et INERIS DCR-16-156181-01401A, 2016)	0- 44
Figure 10 : Localisation des prélèvements d'air ambiant et des sources potentielles de pollution !	50
Figure 11 : Schéma conceptuel actualisé à l'issue du diagnostic	58

LISTE DES TABLEAUX

Tableau I : Prestations réalisées	10
Tableau 2 : Stratégie d'investigations	17
Tableau 3 : Coordonnées des points de prélèvements des sondages	19
Tableau 4 : Synthèse des observations organoleptiques dans les sols	20
Tableau 5 : Synthèse du programme analytique sur les sols	21
Tableau 6 : Résultats analytiques sur les sols qui resteront en place	23
Tableau 7 : Résultats analytiques sur les sols qui resteront en place	24
Tableau 8 : Résultats analytiques sur les sols qui resteront en place	25
Tableau 9 : Résultats analytiques sur les sols qui resteront en place	26
Tableau 10 : Résultats analytiques sur les sols qui resteront en place	27
Tableau II : Résultats analytiques sur les terres pouvant éventuellement être ex	cavées 32
Tableau 12 : Coordonnées de points de prélèvements des eaux souterraines	35
Tableau 13 : Mesures piézométriques	36
Tableau 14 : Descriptif du programme analytique sur les eaux souterraines	38
Tableau 15 : Résultats analytiques sur les eaux souterraines	40
Tableau 16 : Stratégie d'investigations sur les gaz du sol	42
Tableau 17 : Description des piézairs	43
Tableau 18 : Conditions météorologiques du 11/04/2022 au 15/04/2022	44
Tableau 19 : Synthèse du programme analytique sur les gaz du sol	45
Tableau 20 : Résultats analytiques dans les gaz du sol	47
Tableau 21 : Stratégie d'investigations sur l'air ambiant	50
Tableau 22 : Conditions météorologiques sur la période du 10/06/2022 au 20/06	5/202251
Tableau 23 : Synthèse du programme analytique sur l'air ambiant	51
Tableau 24 : Résultats analytiques dans l'air ambiant	53
Tableau 25 : Synthèse des teneurs dans les différents milieux	55

A. CONTEXTE ET OBJECTIF DE NOTRE MISSION

Dans le cadre du réaménagement de la place des Aigues Douces en espaces verts communaux, la commune de Port-de-Bouc a souhaité réaliser un diagnostic complémentaire des milieux au droit du site localisé sur la commune de Port-de Bouc.

FONDASOL Environnement a donc été missionné pour la réalisation des missions A200, A210, A230, A240 et A270, suite au premier diagnostic environnemental des sols réalisé lors de l'étude PR.69EN.21.0037 – Pièce n°001 en juillet 2021 et à l'acceptation de notre devis référencé SQ.69EN.22.02.001-Indice B en date du 01/03/2022.

L'étude précédente avais mis en évidence la présence de divers impacts en métaux au droit du site ainsi que la présence de PCB et d'HCT C_{10} - C_{40} et d'anomalies en HAP.

Cette étude a pour objectif de :

- délimiter les divers impacts en métaux et HAP observés lors de l'étude PR.69EN.21.0037,
- évaluer les potentiels transferts de pollution des sols vers les autres milieux.

Dans ce cadre, notre mission comprend les prestations globales et élémentaires suivantes.

Tableau I: Prestations réalisées

Code	Prestations élémentaires
A200	Prélèvements, mesures, observations et/ou analyses sur les sols
A210	Prélèvements, mesures, observations et/ou analyses sur les eaux souterraines
A230	Prélèvements, mesures, observations et/ou analyses sur les gaz du sol
A240	Prélèvements, mesures, observations et/ou analyses sur l'air ambiant et les poussières atmosphériques
A260	Prélèvements, mesures, observations et/ou analyses sur les terres excavées ou à excaver
A270	Interprétation des résultats des investigations

B. PRESENTATION DU SITE ET DU PROJET

B.I. Description générale du site

Le propriétaire du site est la commune de Port-De-Bouc.

Le site d'étude est localisé rue de Turenne au droit de la place des Aigues Douces sur la commune de Port-de-Bouc dans le département des Bouches-du-Rhône (13). Il occupe la parcelle cadastrale n° 104 de la section AA représentant une superficie totale de l'ordre de 5 900 m².

D'après Géoportail, le site est implanté à une altitude comprise de + 7 m NGF.

Le terrain présente une pente légère (≈ 2%) descendante vers le sud-est.

Le site est utilisé comme zone de promenade et zones de jeux par les riverains.

Le site est bordé:

- au nord par la rue de Turenne au-delà de laquelle un immeuble est construit ;
- au sud par un parc;
- à l'est par un ensemble de bâtiments résidentiels, un immeuble et des commerces ;
- à l'ouest par un immeuble d'habitations collectives en bordure immédiate du site.

La localisation géographique et cadastrale du site est présentée en Figure 1.

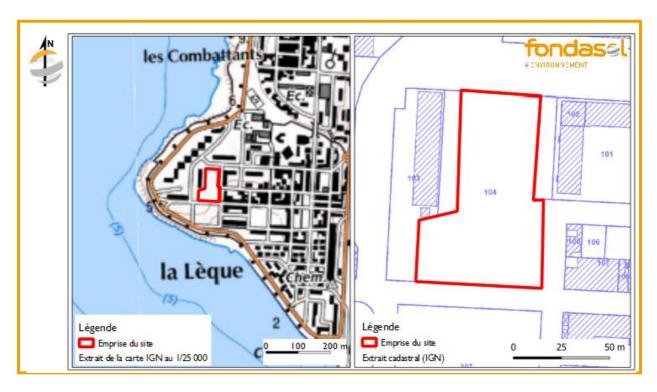


Figure 1: Localisation géographique et cadastrale du site d'étude (source : IGN©)

B.2. Projet d'aménagement

Le projet d'aménagement consiste en l'aménagement :

- de voiries,
- d'espaces verts,
- potentiellement d'une aire de jeux pour enfants.

Sur la base des informations transmises, notre étude ne considère pas :

- l'aménagement :
 - o de bâtiments,
 - o de sous-sols,
 - o de potagers,
 - o de systèmes d'infiltration d'eaux pluviales (noues, fossés, ...);
- l'usage des eaux :
 - o superficielles,
 - o souterraines (AEP, eaux industrielles, géothermie, ...).

Le plan de masse du projet d'aménagement est présenté en Figure 2.

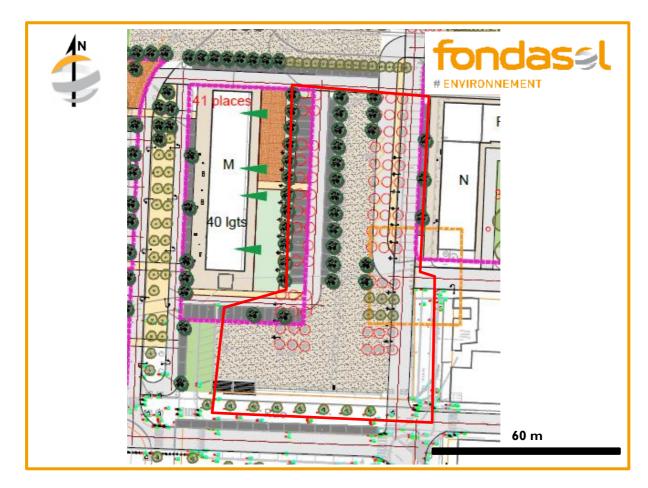


Figure 2 : Plan de masse du projet d'aménagement (source : Esquisse I en date du 05/05/2022)

C. SYNTHESE DES ETUDES ANTERIEURES

Ce chapitre présente les résultats du rapport FONDASOL Environnement référencé PR.69EN.21.0037 – Pièce n°001 en date de juillet 2021. Le contexte est rappelé ci-après.

Client	Commune de Port-de-Bouc		
	Désignation usuelle du site	Place des Aigues Douces	
	Adresse	Rue de Turenne à Port-De-Bouc	
Périmètre d'étude	Parcelles cadastrales	n°104 de la section AA	
	Surface approximative	5900 m ²	
	Altitude moyenne du site	+ 7 m NGF	
Contexte de l'étude	Aucun projet d'aménagemen	t n'est défini actuellement	
	,	thèse des études antérieures	
A100		sage récréatif (pique-nique et aire de jeux pour enfants). Le sol est à nu. Des	
Visite de site	bâtiments collectifs entourer	nt le site hormis en partie sud où un parc est présent.	
A110 Étude historique	Consultation des photographies aériennes	 De 1917 - jusqu'en 1955 : le site est occupé par 3 bâtiments industriels : un bâtiment à chambre de plomb, un bassin d'eau et une remise à locomotives. Il s'agit de l'ancien site BASIAS Saint Gobain (PAC1302700). Le site semble abandonné à partir des années 1955. De 1955-1971 : le site est démantelé et laissé à l'abandon. De 1973-1992 : des installations non identifiées sont observables au sud du site puis sont évacuées. Depuis 1973 à 2021 : réaménagement du site par un espace récréatif. Des bâtiments résidentiels sont bâtis autour du site. 	
	Consultation de Géorisques ¹	Le site est référencé dans la base de données BASIAS sous le numéro PAC1302700. Il s'agit de l'ancienne entreprise Saint-Gobain. Deux sites SIS sont référencés au nord du site correspondant également à l'ancienne entreprise de Saint-Gobain.	
	Consultation des archives (préfecture, département, commune)	La consultation des archives a permis d'identifier la nature des activités des bâtiments au droit du site. Ainsi le bâtiment principal (chambre de plomb) a abrité des activités de production de sulfates depuis la combustion de pyrite, des stockages de NH3 sont également localisés. Les deux bâtiments situés au sud du site correspondent à un bassin d'eau et une remise à locomotives.	

FONDASOL – PR.69EN.22.0018 – 001 – 1ère diffusion PAGE 13/62 Aménagement d'un espace vert public – PORT-DE-BOUC (13) – Diagnostic complémentaire du milieu souterrain

¹ bases de données CASIAS, des informations de l'administration concernant une pollution suspectée ou avérée, des SIS et des installations classées

A120 Étude de vulnérabilité	Géologie Hydrogéologie	 Sols peu perméables et non couverts. Le site a abrité un ancien site industriel BASIAS. Le site a un usage récréatif (aire de jeu et aire de pique-nique) Vulnérabilité forte La nappe est peu profonde (< 5 m), s'écoule en direction du sud et elle ne dispose pas d'un toit imperméable (alluvions et calcaires). Aucun captage industriel, AEP et individuel ne sont recensés dans l'environnement proche du site d'étude (< 1 km). 		
des milieux	Hydrologie	Vulnérabilité forte Usage non sensible La mer Méditerranée est située à environ 200 m du site d'étude et le chenal à I 500 m. Des zones de baignade sont situées en aval du site (200 m). Vulnérabilité faible Usage sensible		
	Zones naturelles	Aucune zone naturelle protégée n'est recensée à proximité du site et en particulier en aval hydrogéologique Vulnérabilité faible Non concernée		
A200 Investigations sur les sols		ns des sols a été réalisée le 21/06/2021. 9 sondages ont été menés à des e 0,4 et 1,6 m de profondeur.		
A270 Interprétation des résultats	Sols	 Les investigations des sols mettent en évidence : des impacts en métaux lourds non délimités verticalement dû à des refus sur blocs de calcaire. Ces impacts sont localisés sur les sols superficiels au droit de 6 des 9 sondages réalisés. La moitié nord du site semble montrer des anomalies plus importantes, des anomalies en HAP au droit de 8 échantillons, la présence de PCB et d'HCT C10-C40 à des teneurs non représentatives d'un impact, l'absence de quantification en BTEX, COHV et hydrocarbures C5-C10 (composés volatils). Enfin, les teneurs en composé potentiellement volatil (mercure) pouvant générer des contraintes sanitaires sont présentes dans les sols superficiels (notamment 243 mg/kg MS au droit du sondage S3). Les résultats de la première campagne sont présentés dans les Tableau 6, Tableau 7, Tableau 8, Tableau 9 et Tableau 10. 		
Schéma conceptuel	Synthèse des risques retenus	risques Ingestion de sol ou de poussières de sols, Inhalation de composés volatils (sur site ou hors site)		
Recommandations	 Investigations complémentaires sur les sols, Investigations sur les eaux souterraines, Investigations sur les gaz des sols, Investigations de l'air ambiant, Réalisation d'un plan de gestion. 			

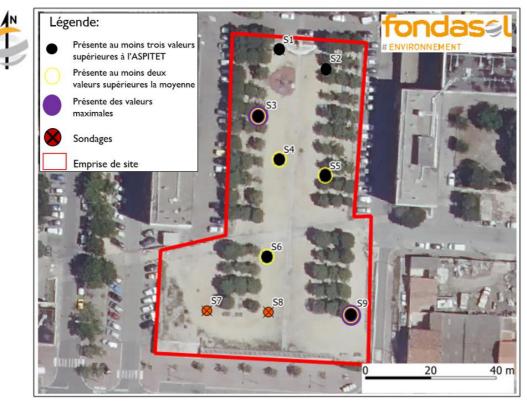


Figure 3 : Synthèse cartographique des teneurs remarquables en métaux lourds sur les sols qui resteront en place

D. SECURISATION DES INVESTIGATIONS ET DEROULEMENT DES INVESTIGATIONS

Dans le but de sécuriser l'intervention vis-à-vis des réseaux enterrés, FONDASOL a géré les DICT. Les DT/DICT conjointes ont été lancées le 11/03/2022 sous le n°2022031105475D.

Le planning pour cette mission a été le suivant :

- La campagne d'investigations sur les sols a été réalisée le 12/04/2022 par la société FONDASOL,
- Les piézomètres ont été mis en place les 11 et 12/04/2022 par la société FONDASOL.
- La campagne de prélèvement sur les eaux souterraines a été réalisée le 20/04/2022 par la société FONDASOL.
- Les piézairs ont été mis en place les 11 et 12/04/2022 par la société FONDASOL.
- La campagne de prélèvement sur les gaz du sol a été réalisée le 14/04/2022 par la société FONDASOL.
- La campagne de prélèvement sur l'air ambiant a été réalisée du 13 au 20/06/2022 par la société FONDASOL.
- Les échantillons de sols sélectionnés ont été pris en charge par transporteur express le 13/04/2022 et réceptionnés par le laboratoire le 14/04/2022.
- Les échantillons d'eaux souterraines ont été pris en charge par transporteur express le 21/04/2022 et réceptionnés par le laboratoire le 22/04/2022.
- Les échantillons de gaz du sol ont été pris en charge par transporteur express le 15/04/2022 et réceptionnés par le laboratoire le 18/04/2022.
- Les échantillons d'air ambiant ont été déposés au laboratoire et réceptionnés le 22/06/2022.
- Les derniers résultats d'analyses ont été réceptionnés le 06/07/2022.

E. INVESTIGATIONS SUR LES SOLS ET LES TERRES A EXCAVER (A200 ET A260)

Du fait des anomalies observées en métaux lourds lors de la précédente étude, des investigations complémentaires sur les sols ont été réalisées afin de les délimitées. De plus, afin de déterminer les filières d'évacuations des terres qui seront gérées dans le cadre de la dépollution du site, des investigations sur terres à excaver ont été réalisées.

E.I. Rappel du contexte et objectifs des prélèvements de sols

Du fait des anomalies observées en métaux lourds lors de la précédente étude, des investigations complémentaires sur les sols ont été réalisées afin de les délimitées. De plus, afin de déterminer les filières d'évacuations des terres qui seront gérées dans le cadre de la dépollution du site, des investigations sur terres à excaver ont été réalisées.

E.2. Stratégie d'investigations sur les sols

Les investigations menées sur le secteur d'étude ont consisté en la réalisation de 10 sondages de sols, à la tarière mécanique, conduits jusqu'à une profondeur maximale de 2 m.

La stratégie d'investigations est rappelée dans le Tableau 2.

Enjeu Profondeur Profondeur **Sondages** prévisionnelle Source potentielle de pollution atteinte Objectifs S21 Délimitation anomalie S3 2,00 m Ancien bâtiment industriel, 2 m **S22** emprise des chambres de plomb / Délimitation anomalie S3 / S4 2 m 1,00 m S23 Dépôts de matériaux de Délimitation anomalie S4 2 m 1,50 m **S24** construction ou démolition Délimitation anomalie \$4/\$5 2 m 1,00 m Dépôts de matériaux inconnus **S25** Délimitation anomalie S6 2 m 1,20 m (1930)Ancien bassin d'eau (Société Saint **S26** Délimitation anomalie S6/S7/S8 2 m 1,00 m Gobain) Ancien bassin d'eau (Société Saint **S27** Délimitation anomalie S9 2 m 0,80 m Gobain) Remise à locomotives et Délimitation anomalie S7 **S28** 2 m 2,00 m anciennes installations temporaires de cuves aériennes Ancien bassin d'eau (Société Saint **S29** Délimitation anomalie \$7/\$8 2 m 1,55 m Gobain) Ancien bassin d'eau (Société Saint **S30** Délimitation anomalie S9 2,00 m 2 m Gobain)

Tableau 2 : Stratégie d'investigations

Les sondages S22, S23, S24, S25, S26, S27 et S29 n'ont pu être réalisés aux profondeurs prévisionnelles compte tendu de refus à l'avancement liés à la présence de rochers/blocs.

La localisation des sondages est présentée dans la Figure 4. L'ensemble des données de terrain a été consigné et est présentée en Annexe 6.

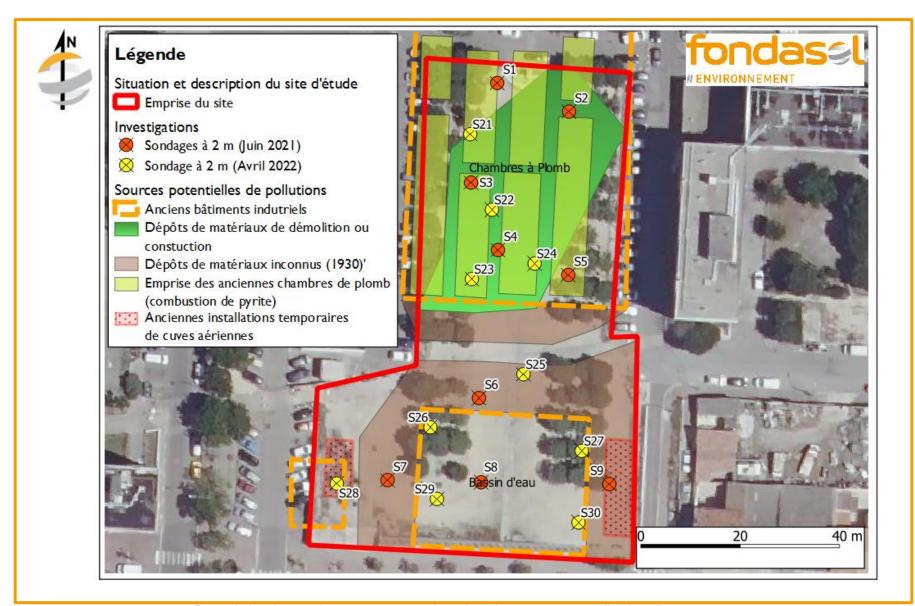


Figure 4 : Localisation des investigations sur les sols et des sources potentielles de pollution

E.3. Déroulement de la campagne de sol

Les coordonnées géographiques des sondages sont précisées dans le Tableau 3.

Tableau 3 : Coordonnées des points de prélèvements des sondages

Points de prélèvement	Coordonnées géographiques en WGS 84 : 4386			
Points de prélèvement	X	Y		
S21	4.9764400	43.4026068		
S22	4.9764893	43.4024689		
S23	4.9764350	43.4023442		
S24	4.9765918	43.4023693		
S25	4.9765574	43.4021694		
S26	4.9763226	43.4020775		
S27	4.9766975	43.4020279		
S28	4.9760865	43.4019800		
S29	4.9763344	43.4019474		
S30	4.9766849	43.4018982		

FONDASOL a veillé au bon état du matériel utilisé pour la réalisation des sondages et a nettoyé les outils avant et entre chaque utilisation. Les sondages ont été immédiatement rebouchés avec les cuttings de forage. Aucun matériau excédentaire n'a été laissé sur site.

Les prélèvements ont été réalisés par un ingénieur du Département Environnement de FONDASOL qui a procédé au relevé des coupes lithologiques et au prélèvement d'échantillons, à raison d'au moins un échantillon par mètre linéaire de terrains traversés et par faciès géologique rencontré, ou moins en cas d'identification d'indices organoleptiques. De plus, il a reporté toutes les observations utiles à la sélection des échantillons (aspect, couleur, ...) dans les fiches de prélèvements présentées en Annexe 6.

Dès leur prélèvement, les échantillons ont été conditionnés dans des flaconnages spécifiques fournis par le laboratoire, étiquetés sur site afin d'en assurer la traçabilité et stockés en atmosphère réfrigérée afin d'assurer leur bonne conservation jusqu'à leur arrivée au laboratoire d'analyses.

Les échantillons ont été analysés par le laboratoire, AGROLAB, accrédité par le RvA – Raad voor Accreditatie – conformément aux critères des laboratoires d'analyses ISO/IEC 17025:2017, accréditation reconnue par le COFRAC.

E.4. Observations de terrain

De manière générale, les relevés lithologiques ont mis en évidence la présence :

- d'une couche de forme gravelo-sableuse beige d'une épaisseur variant de 0,1 à 0,4 m,
- de remblais sablo-limono-graveleux marron à beiges observés entre 0,2 et 1,5 m, parfois jusqu'à 2 m),
- de calcaires fracturés beiges présents au-delà et occasionnant des refus.

Aucun niveau d'eau n'a été observé sur site lors de la réalisation des sondages. Nous rappelons que seul un suivi piézométrique permettrait de connaître les fluctuations de niveau des eaux souterraines.

La présence de couleurs et d'odeurs suspectes a été notifiée au droit de certains échantillons (cf. tableau ci-après).

Les échantillons prélevés ont fait l'objet de mesures PID (référence de l'appareil : 3ELY.A.17) sur le terrain, afin d'évaluer le potentiel de dégazage des sols en composés organiques volatils. L'ensemble de ces mesures semi-quantitatives a mis en évidence des valeurs de 0 ppm.

Le Tableau 4 ci-dessous présente une synthèse des indices organoleptiques de pollution rencontrés au droit des sondages environnementaux.

Tableau 4 : Synthèse des observations organoleptiques dans les sols

Échantillon	Observations organoleptiques	Lithologie	Mesures de terrain
S24 (0,3-0,6 m)	Couleur noirâtre	Limons gravelo-sableux noirâtre à gris foncé	0 ррт
S25 (0,5-0,8 m)	Couleur noirâtre et mâchefer	Sables graveleux marron noirâtre	0 ррт
S27 (0,3-0,9 m)	Débris de verre	Limons gravelo-sableux marron	0 ррт
S29 (0,0-1,0 m)	Odeur de brûlé	Argile gravelo-sableuse marron	0 ррт

E.5. Sélection des échantillons de sols

Sur la base des observations de terrain et du projet d'aménagement prévu au droit du site, 29 échantillons de sols ont été sélectionnés afin d'obtenir une caractérisation de l'ensemble des profondeurs et transmis au laboratoire pour analyses

Ainsi, les échantillons envoyés en analyses et les paramètres recherchés sont présentés dans le Tableau 5.

Les propriétés physico-chimiques des composés recherchés sont présentées en Annexe 4 et les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé en Annexe 5.

Tableau 5 : Synthèse du programme analytique sur les sols

	En	jeu	Paramètres recherchés								
		jeu									
Echantillons (profondeur)	Source potentielle de pollution	Aménagement projeté / Objectifs	НСТ	HV	HAP	BTEX	СОНУ	8 ETM	РСВ	Pack ISDI	
S21 (0,0-0,2 m)	Ancien bâtiment			Х			X	×		X	
S21 (0,2-0,7 m)	industriel, emprise des chambres de plomb /	Délimitation anomalie	Х	X	X	Х	Х	Х	X		
S21 (0,7-0,9 m)	Dépôts de matériaux de	S3	Х	Х	Х	Х	Х	Х	X		
S21 (0,9-2,0 m)	construction ou démolition		Х	X	Х	Х	Х	X	X		
S22 (0,0-0,2 m)	Ancien bâtiment industriel, emprise des			Х			Х	X		Х	
S22 (0,2-0,6 m)	chambres de plomb / Dépôts de matériaux de	Délimitation anomalie S3/S4	×	×	×	×	×	×	Х		
S22 (0,6-1,0 m)	construction ou démolition		X	Х	Х	Х	Х	Х	×		
S23 (0,0-0,3 m)	Ancien bâtiment			×			Х	X		Х	
S23 (0,3-0,5 m)	industriel, emprise des chambres de plomb /	Délimitation anomalie	X	×	Х	X	Х	×	X		
S23 (0,5-1,0 m)	Dépôts de matériaux de construction ou	S4	Х	×	Х	Х	Х	X	X		
S23 (1,0-1,5 m)	démolition		Х	×	Х	Х	Х	X	X		
S24 (0,0-0,1 m)	Ancien bâtiment			Х			Х	Х		Х	
S24 (0,1-0,3 m)	industriel, emprise des chambres de plomb /	Délimitation anomalie	Х	X	Х	Х	Х	Х	X		
S24 (0,3-0,6 m)	Dépôts de matériaux de construction ou	S4/S5	Х	Х	Х	Х	Х	Х	X		
S24 (0,6-1,0 m)	démolition		Х	Х	Х	Х	Х	Х	X		
S25 (0,1-0,5 m)				Х			Х	Х		Х	
S25 (0,5-0,8 m)	Dépôts de matériaux inconnus (1930)	Délimitation anomalie S6	Х	Х	Х	Х	Х	Х	X		
S25 (0,8-1,2 m)			Х	Х	Х	Х	Х	Х	X		
S26 (0,3-0,7 m)	Ancien bassin d'eau	Délimitation anomalie		Х			Х	Х		Х	
S26 (0,7-1,0 m)	(Société Saint Gobain)	S6/S7/S8	Х	Х	Х	Х	Х	Х	X		
S27 (0,3-0,9 m)	Ancien bassin d'eau (Société Saint Gobain)	Délimitation anomalie S9		Х			Х	Х		Х	
S28 (0,0-0,7 m)	Remise à locomotives et anciennes		X	X	X	X	Х	X	X		
S28 (0,7-1,0 m)	installations	Délimitation anomalie S7	Х	Х	Х	Х	Х	Х	X		
S28 (1,0-2,0 m)	temporaires de cuves aériennes	<u> </u>	Х	Х	Х	Х	Х	Х	Х		
S29 (0,00-1,00 m)	Ancien bassin d'eau	Délimitation anomalie	Х	X	Х	Х	Х	Х	X		
S29 (1,00-1,55 m)	(Société Saint Gobain)	S7/S8	Х	X	Х	Х	Х	Х	X		
S30 (0,0-0,4 m)		-		X			Х	Х		Х	
S30 (0,4-1,0 m)	Ancien bassin d'eau (Société Saint Gobain)	Délimitation anomalie S9	Х	X	Х	Х	Х	Х	X		
S30 (1,0-2,0 m)	,		Х	Х	Х	Х	Х	Х	Х		

Les abréviations des composés / packs analytiques proposés sont décrites en Annexe 2.

E.6. Valeurs de référence pour les sols en place

Conformément à la méthodologie pour la gestion des sites et sols pollués, nous rappelons que les concentrations doivent être comparées, en l'absence de données régionales, aux données nationales issues :

- du programme ASPITET (INRA, 1994) pour les métaux. Les résultats et les stratégies d'interprétation sont rassemblés dans l'ouvrage de Baize D. (1997) – Teneurs totales en éléments métalliques dans les sols (INRA Editions, Paris);
- de la base de données BDSolU qui propose des teneurs de centile 98 pour les HAP et le naphtalène pour les zones urbaines de la France entière.

Par ailleurs, pour le plomb, le Haut Conseil de Santé Publique (HCSP) mentionne une valeur de 300 mg (Pb)/kg sol, comme étant une valeur seuil entraînant un dépistage du saturnisme infantile. Un seuil de vigilance a également été établi à 100 mg/kg de plomb dans les sols. Ces valeurs sont des valeurs de gestion mais ne constituent pas la valeur du bruit de fond.

En l'absence de valeur caractérisant le bruit de fond pour les autres substances, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.

Les valeurs de comparaison retenues sont rappelées dans les premières colonnes des tableaux des résultats d'analyses.

Les résultats de la première étude sont aussi rappelés dans les tableaux suivants.

E.7. Valeurs de référence pour la gestion des terres excavées

Afin d'appréhender la gestion de terres qui seront potentiellement excavées dans le cadre de la gestion de la pollution, les concentrations sur le sol brut et lixiviats ont été comparées aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux Installations de Stockage de Déchets Inertes (ISDI) ainsi qu'aux seuils d'admission en ISDND et ISDD établis par la FNADE².

Elles sont rappelées dans les premières colonnes des tableaux des résultats d'analyses.

E.8. Présentation des résultats des terres qui resteront en place

Les bordereaux d'analyses sur les sols sont présentés en Annexe 7. Le Tableau 6 présente la synthèse des résultats et la comparaison aux valeurs de référence précitées.

_

² Fédération Nationale des Activités de Dépollution et de l'Environnement

Tableau 6 : Résultats analytiques sur les sols qui resteront en place

							/1							
Secteur de la zone d'étude Echantillons			Valeurs de référer	nces pour le plomb	SI (0,0-0,5 m)	PR.69EN.21.0037 - 001 S2 (0,00-0,85 m)	S3 (0,0-0,4 m)	S21 (0,0-0,2 m)	\$21 (0,2-0,7 m)	S21 (0,7-0,9 m)	PR.69EN.22.0018-001 S21 (0,9-2,0 m)	\$22 (0,0-0,2 m)	S22 (0,2-0,6 m)	S22 (0,6-1,0 m)
Date de prélèvements				, p.ob	21.06.2021	21.06.2021	21.06.2021	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022
Faciès	Unité	Bruit de fond géochimique (I)	Valore de la la	Volume	Sables limono-graveleux bruns à beiges	Limon sablo-graveleux gris à bruns	Sables et limons gris foncés à orangés voire rougeâtre avec graves	Couche de forme gravelo- sableuse beige	Sables gravelo-sableux brun à beige	Limon marron foncé avec grave	Limon sableux beige	Couche de forme gravelo- sableuse beige	Limons sableux beiges à marron	Calcaire
Indice organoleptique			Valeur de vigilance	Valeur seuil	-	-	-	-	-		-	-		
Paramètre														
Matière sèche COT Carbone Organique Total	% mg/kg Ms				95,5 -	94,3	90,8	98.9 3000	96	85.1	93.2	99 5500	83.5	93
Métaux Lourds														
Arsenic Cadmium	mg/kg Ms mg/kg Ms	25 0.45			55 0.6	0.3	4700 1.2	0.1	0.2	8.2 0.2	0.2	0.1	2500 7.3	330
Chrome	mg/kg Ms	90			15	19	7.8	5.5	9.5	25	13	3.5	8.3	7.9
Cuivre	mg/kg Ms	20			55	43	460	3.9	27	19	6.6	1.2	460	100
Mercure Nickel	mg/kg Ms mg/kg Ms	60			1.99	0.89	243 7.8	<0.05 4	0.76 7.7	0.28	0.06 3.3	0.06	3200 4.1	282
Plomb	mg/kg Ms	50	100	300	170	150	8100	5	62	36	4.3	5	47000	9000
Zinc Composés Organo Halogénés Volati	mg/kg Ms	100			100	91	480	П	44	48	61	6.3	220	140
Chlorure de Vinyle	mg/kg Ms				-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dichlorométhane	mg/kg Ms				-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichlorométhane Tétrachlorométhane	mg/kg Ms mg/kg Ms				-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Trichloroéthylène	mg/kg Ms				-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tétrachloroéthylène	mg/kg Ms				-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
1,1,2-Trichloroéthane	mg/kg Ms mg/kg Ms				-	<0.05	<0.05 <0.05	<0.05 <0.05	<0.05	<0.05 <0.05	<0.05	<0.05	<0.05	<0.05
1,1-Dichloroéthane	mg/kg Ms				-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
I,2-Dichloroéthane cis-I,2-Dichloroéthène	mg/kg Ms mg/kg Ms				-	<0.05 <0.025	<0.05 <0.025	<0.05 <0.025	<0.05 <0.025	<0.05 <0.025	<0.05 <0.025	<0.05 <0.025	<0.05 <0.025	<0.05 <0.025
I,I-Dichloroéthylène	mg/kg Ms				-	<0.10	<0.025	<0.10	<0.10	<0.10	<0.10	<0.025	<0.10	<0.10
Trans-1,2-Dichloroéthylène	mg/kg Ms				-	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Somme cis/trans-1,2-Dichloroéthylènes BTEX	mg/kg Ms					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Benzène	mg/kg Ms				-	<0.05	<0.05	<0.050	<0.05	<0.05	<0.05	<0.050	<0.05	<0.05
Toluène	mg/kg Ms				-	<0.05 <0.05	<0.05	<0.050	<0.05	<0.05	<0.05	<0.050	<0.05	<0.05
Ethylbenzène m,p-Xylène	mg/kg Ms mg/kg Ms				-	<0.10	<0.05 <0.10	<0.050 <0.10	<0.05	<0.05 <0.10	<0.05	<0.050 <0.10	<0.05 <0.10	<0.05 <0.10
o-Xylène	mg/kg Ms				-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Somme Xylènes Somme BTEX	mg/kg Ms mg/kg Ms				-	n.d.	n.d. n.d.	n.d.	n.d. n.d.	n.d.	n.d. n.d.	n.d.	n.d.	n.d.
Hydrocarbures Volatils	6/1/6 1:13					11.0.	11.51.	11.4.	n.u.	11.0.	11,41,	11.53.	ma.	
Fraction aliphatique C5-C6	mg/kg Ms				<0,20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8	mg/kg Ms mg/kg Ms				<0,20 <0,20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20
Fraction aliphatique >C8-C10	mg/kg Ms				<0,20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction aromatique >C8-C10 Fraction >C6-C8	mg/kg Ms mg/kg Ms				<0,20 <0,40	<0.20 <0.40	<0.20 <0.40	<0.20 <0.40	<0.20 <0.40	<0.20 <0.40	<0.20 <0.40	<0.20 <0.40	<0.20 <0.40	<0.20 <0.40
Fraction C8-C10	mg/kg Ms				<0,40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Fraction C5-C10	mg/kg Ms				<1,0	<1.0	<1.0	0,1>	0, >	<1.0	0,1>	<1.0	< 1.0	<1.0
Hydrocarbures Totaux Hydrocarbures totaux C10-C40	mg/kg Ms				91.6	<20.0	330	<20.0	23.6	<20.0	<20.0	<20.0	110	<20.0
Fraction C10-C12	mg/kg Ms				<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Fraction C12-C16 Fraction C16-C20	mg/kg Ms mg/kg Ms				<4.0 16.3	<4.0 2.9	<4.0 24.6	<4.0 <2.0	<4.0 3.9	<4.0 <2.0	<4.0 <2.0	<4.0 <2.0	<4.0 4.9	<4.0 <2.0
Fraction C16-C20 Fraction C20-C24	mg/kg Ms				23.5	3.6	64.1	<2.0	3.9	<2.0	<2.0	<2.0	13.7	<2.0
Fraction C24-C28	mg/kg Ms				22.4	3.9	110	2.5	4.7	<2.0	<2.0	<2.0	30.3	3.2
Fraction C28-C32 Fraction C32-C36	mg/kg Ms mg/kg Ms				16 9.3	4.5 2.7	85 34.7	3.6 <2.0	5.5 2.7	3.9 <2.0	<2.0 <2.0	<2.0 <2.0	34 19.5	3.3 <2.0
Fraction C36-C40	mg/kg Ms				2.1	<2.0	10.2	<2.0	<2.0	<2.0	<2.0	<2.0	5.4	<2.0
Hydrocarbures Aromatiques Polycy	mg/kg Ms	')			<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Acénaphtylène Acénaphtène	mg/kg Ms mg/kg Ms				<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Fluorène	mg/kg Ms				<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Pyrène Benzo(b)fluoranthène	mg/kg Ms mg/kg Ms				5.1 2.6	0.38	0.95 0.54	<0.050 <0.050	0.8	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.38	0.066 <0.050
Dibenzo(a,h)anthracène	mg/kg Ms				0.28	<0.050	0.068	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Anthracène	mg/kg Ms				0.14	0.1	0.15	<0.050	0.21	<0.050	<0.050	<0.050	<0.050	<0.050
Benzo(a)anthracène Benzo(a)pyrène	mg/kg Ms mg/kg Ms				2.5 2.6	0.49 0.4	0.55 0.34	<0.050 <0.050	0.29 0.1	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.16	<0.050 <0.050
Benzo(g,h,i)pérylène	mg/kg Ms				1.8	0.39	0.36	<0.050	0.064	<0.050	<0.050	<0.050	0.14	<0.050
Benzo(k)fluoranthène Chrysène	mg/kg Ms mg/kg Ms				1.5 2.1	0.22	0.29	<0.050 <0.050	0.073 0.25	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.093	<0.050 <0.050
Fluoranthène	mg/kg Ms				4.9	1.2	1.8	<0.050	1.1	<0.050	<0.050	<0.050	0.18	0.072
Indéno(1,2,3-cd)pyrène	mg/kg Ms				2	0.25	0.32	<0.050	0.073	<0.050	<0.050	<0.050	0.13	<0.050
Naphtalène Phénanthrène	mg/kg Ms mg/kg Ms	0.15			<0.050	<0.050 0.85	<0.050 1.2	<0.050 <0.050	<0.050 0.52	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 0.22	<0.050 <0.050
Somme HAP (6)	mg/kg Ms				15.4	2.84	3.65	n.d.	1.55	n.d.	n.d.	n.d.	1.15	0.072
Somme HAP (VROM)	mg/kg Ms	14.7			18.5	4.35	5.62	n.d.	2.68	n.d.	n.d.	n.d.	1.52	0.072
Somme HAP (EPA) PCB	mg/kg Ms	14.7			26.5	5.73	7.18	n.d.	3.62	n.d.	n.d.	n.d.	2.09	0.138
PCB (28)	mg/kg Ms				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB (52) PCB (101)	mg/kg Ms mg/kg Ms				<0.001	<0.001 <0.001	<0.001	<0.001 <0.001	<0.001	<0.001 <0.001	<0.001 <0.001	<0.001	<0.001 0.002	<0.001 <0.001
PCB (118)	mg/kg Ms mg/kg Ms				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0.001
PCB (138)	mg/kg Ms				0.003	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.006	<0.001
PCB (153) PCB (180)	mg/kg Ms mg/kg Ms				0.003 0.003	<0.001 <0.001	0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	0.005 0.004	<0.001 <0.001
Somme PCB (7)	mg/kg Ms				0.01	n.d.	0.002	n.d.	n.d.	n.d.	n.d.	n.d.	0.019	n.d.

En orange : valeurs dépassant le bruit de fond géochimique mentionné par l'ASPITET

En bleu clair : valeurs dépassants la valeur de vigilance vis-à-vis du plomb du HCSP

En bleu foncé : valeurs dépassants la valeur seuil entraînant un dépistage du saturnisme infantile mentionné par l'HCSP

Tableau 7 : Résultats analytiques sur les sols qui resteront en place

									, '		'	<u> </u>						
Secteur de la zone d'étude Echantillons			Valeurs de référenc	res nour le nlomb	S3 (0,0-0,4 m)	PR.69EN.21.0037 - 001	S5 (0,0-0,7 m)	\$22 (0,0-0,2 m)	\$22 (0,2-0,6 m)	S22 (0,6-1,0 m)	\$23 (0,0-0,3 m)	\$23 (0,3-0,5 m)	PR.69EN.22.0018-001 S23 (0.5-1.0 m)	S23 (1,0-1,5 m)	S24 (0,0-0,1 m)	\$24 (0,1-0,3 m)	\$24 (0,3-0,6 m)	S24 (0,6-1,0 m)
Date de prélèvements			valeurs de referenc	ces pour le pionib	21.06.2021	21.06.2021	21.06.2021	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022
		Bruit de fond			Sables et limons gris	Sables et limons graveluex	Sables limono gravelux	Couche de forme gravelo-	Limons sableux beiges à		Couche de forme gravelo-		Limon gravelo-sableux	Limon gravelo-sableux	Couche de forme gravelo		Limon gravelo-sableux	
Faciès	Unité	géochimique (I)			foncés à orangés voire rougeâtre avec graves	beiges à orangés	bruns orangés à gris légèrement humide	sableuse beige	marron	Calcaire	sableuse beige	Limon gravelo-sableux	beige	beige	sableuse	Sable marron graveleux	noirâtre à gris foncé	Calcaire fracturé
			Valeur de vigilance	Valeur seuil														
Indice organoleptique					-	-	Débris plastiques	-	-		-	-	-	-	-	-	Couleur noirâtre	-
Paramètre																		
Matière sèche	%				90,8	95,5	88,6	99	83.5	93	99	90	96	92.5	98.4	88.8	82.7	96
COT Carbone Organique Total Métaux Lourds	mg/kg Ms				-	-	-	5500	-	-	1900	-	-	-	2200	-	-	-
Arsenic	mg/kg Ms	25			4700	1200	110	1.5	2500	330	3.2	470	15	29	2.7	1200	740	4.7
Cadmium Chrome	mg/kg Ms mg/kg Ms	90			1.2 7.8	2.9 8.7	17	0.1 3.5	7.3 8.3	7.9	0.2 9.4	1.2	0.2	9.9	7.9	1.8	7.5	0.2
Cuivre	mg/kg Ms	20			460	310	1000	1.2	460	100	6.8	440	20	32	5.8	590	710	15
Mercure Nickel	mg/kg Ms mg/kg Ms	60			243 7.8	45.9 8.2	2.08	0.06	3200 4.1	2.5	<0.05 8.6	32.4 8.5	0.36 2.3	0.84 2.3	<0.05 7.1	103 8.8	140 8.3	0.23 2.2
Plomb	mg/kg Ms	50	100	300	8100	2600	220	5	47000	9000	5.8	2500	36	99	4.3	5000	3500	16
Zinc Composés Organo Halogénés Volat	mg/kg Ms ils (COHV)	100			480	1500	1400	6.3	220	140	19	310	20	24	15	570	620	26
Chlorure de Vinyle	mg/kg Ms				<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dichlorométhane Trichlorométhane	mg/kg Ms mg/kg Ms				<0.05 <0.05	<0.05 <0.05	<0.05	<0.05 <0.05	<0.05 <0.05	<0.05	<0.05 <0.05	<0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Tétrachlorométhane	mg/kg Ms				<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroéthylène Tétrachloroéthylène	mg/kg Ms mg/kg Ms				<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
I,I,I-Trichloroéthane	mg/kg Ms				<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2-Trichloroéthane	mg/kg Ms mg/kg Ms				<0.05 <0.10	<0.05	<0.05	<0.05 <0.10	<0.05 <0.10	<0.05	<0.05 <0.10	<0.05	<0.05 <0.10	<0.05 <0.10	<0.05	<0.05 <0.10	<0.05	<0.05
1,2-Dichloroéthane	mg/kg Ms				<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05
cis-1,2-Dichloroéthène	mg/kg Ms mg/kg Ms				<0.025 <0.10	<0.025 <0.10	<0.025 <0.10	<0.025 <0.10	<0.025 <0.10	<0.025	<0.025 <0.10	<0.025 <0.10	<0.025 <0.10	<0.025 <0.10	<0.025 <0.10	<0.025 <0.10	<0.025 <0.10	<0.025 <0.10
Trans-1,2-Dichloroéthylène	mg/kg Ms				<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025	<0.025
Somme cis/trans-1,2-Dichloroéthylènes BTEX	mg/kg Ms				n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Benzène	mg/kg Ms				<0.05	<0.05	<0.05	<0.050	<0.05	<0.05	<0.050	<0.05	<0.05	<0.05	<0.050	<0.05	<0.05	<0.05
Toluène Ethylbenzène	mg/kg Ms mg/kg Ms				<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.050 <0.050	<0.05 <0.05	<0.05	<0.050 <0.050	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.050 <0.050	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
m,p-Xylène	mg/kg Ms				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylène Somme Xylènes	mg/kg Ms mg/kg Ms				<0.050 n.d.	<0.050 n.d.	<0.050 n.d.	<0.050 n.d.	<0.050	<0.050	<0.050 n.d.	<0.050 n.d.	<0.050 n.d.	<0.050 n.d.	<0.050 n.d.	<0.050 n.d.	<0.050 n.d.	<0.050 n.d.
Somme BTEX	mg/kg Ms				n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures Volatils Fraction aliphatique C5-C6	mg/kg Ms				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction aliphatique >C6-C8	mg/kg Ms				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10	mg/kg Ms mg/kg Ms				<0.20 <0.20	<0.20	<0.20	<0.20	<0.20 <0.20	<0.20	<0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20	<0.20	<0.20 <0.20	<0.20
Fraction aromatique >C8-C10	mg/kg Ms				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction >C6-C8 Fraction C8-C10	mg/kg Ms mg/kg Ms				<0.40 <0.40	<0.40	<0.40	<0.40 <0.40	<0.40 <0.40	<0.40	<0.40 <0.40	<0.40	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40	<0.40 <0.40
Fraction C5-C10	mg/kg Ms				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hydrocarbures Totaux Hydrocarbures totaux C10-C40	mg/kg Ms				330	59.9	<20.0	<20.0	110	<20.0	<20.0	48	<20.0	<20.0	<20.0	150	120	<20.0
Fraction C10-C12	mg/kg Ms				<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Fraction C12-C16 Fraction C16-C20	mg/kg Ms mg/kg Ms				<4.0 24.6	<4.0 4.7	<4.0 3.7	<4.0 <2.0	<4.0 4.9	<4.0	<4.0 <2.0	<4.0 2.7	<4.0 <2.0	<4.0 <2.0	<4.0 <2.0	<4.0 17.5	<4.0 20.7	<4.0 <2.0
Fraction C20-C24	mg/kg Ms				64.1	10.6	4	<2.0	13.7	<2.0	<2.0	9.6	<2.0	<2.0	<2.0	30	28.4	<2.0
Fraction C24-C28 Fraction C28-C32	mg/kg Ms mg/kg Ms				110 85	18.7	4.1	<2.0 <2.0	30.3 34	3.2	<2.0 3.2	15.7	<2.0 <2.0	<2.0 <2.0	2.5 4.9	39.9 33	32.5 27	<2.0 <2.0
Fraction C32-C36	mg/kg Ms				34.7	7.4	<2.0	<2.0	19.5	<2.0	<2.0	5.6	<2.0	<2.0	<2.0	18.7	11.5	<2.0
Fraction C36-C40 Hydrocarbures Aromatiques Polycy	mg/kg Ms)			10.2	2.7	<2.0	<2.0	5.4	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	5.9	3	<2.0
Acénaphtylène	mg/kg Ms				<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Acénaphtène Fluorène	mg/kg Ms mg/kg Ms				<0.050 <0.050	0.052 <0.050	0.065 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.06	0.088	<0.050 <0.050
Pyrène	mg/kg Ms				0.95	0.6	0.077	<0.050	0.38	0.066	<0.050	0.32	<0.050	<0.050	<0.050	3.9	5	<0.050
Benzo(b)fluoranthène Dibenzo(a,h)anthracène	mg/kg Ms mg/kg Ms				0.54 0.068	0.22 <0.050	0.067 <0.050	<0.050 <0.050	0.19 <0.050	<0.050 <0.050	<0.050 <0.050	0.26 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.25	3.I 0.27	<0.050 <0.050
Anthracène	mg/kg Ms				0.15	0.07	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.72	0.42	<0.050
Benzo(a)anthracène Benzo(a)pyrène	mg/kg Ms mg/kg Ms				0.55 0.34	0.27 0.28	0.062 0.064	<0.050 <0.050	0.16 0.17	<0.050 <0.050	<0.050 <0.050	0.17	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	1.9	2.8	<0.050 <0.050
Benzo(g,h,i)pérylène	mg/kg Ms				0.36	0.27	<0.050	<0.050	0.14	< 0.050	<0.050	0.13	<0.050	<0.050	<0.050	1.4	2.2	<0.050
Benzo(k)fluoranthène Chrysène	mg/kg Ms mg/kg Ms				0.29	0.14	<0.050 0.059	<0.050 <0.050	0.093	<0.050 <0.050	<0.050 <0.050	0.1	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.92	1.7	<0.050 <0.050
Fluoranthène	mg/kg Ms				1.8	0.61	0.11	<0.050	0.43	0.072	<0.050	0.41	<0.050	<0.050	<0.050	4.5	7.1	<0.050
Indéno(1,2,3-cd)pyrène Naphtalène	mg/kg Ms mg/kg Ms	0.15			0.32 < 0.050	0.23 <0.050	<0.050 <0.050	<0.050 <0.050	0.13 <0.050	<0.050 <0.050	<0.050 <0.050	0.17 < 0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	1.4 <0.050	2.5 0.37	<0.050 <0.050
Phénanthrène	mg/kg Ms				1.2	0.3	0.07	<0.050	0.22	< 0.050	<0.050	0.16	<0.050	<0.050	<0.050	3.4	3.5	<0.050
Somme HAP (6) Somme HAP (VROM)	mg/kg Ms mg/kg Ms				3.65 5.62	1.75 2.46	0.241	n.d. n.d.	1.15	0.072	n.d. n.d.	1.19	n.d. n.d.	n.d. n.d.	n.d. n.d.	12	19.5 27.5	n.d. n.d.
Somme HAP (EPA)	mg/kg Ms	14.7			7.18	3.33	0.574	n.d.	2.09	0.138	n.d.	2.07	n.d.	n.d.	n.d.	24.4	36.1	n.d.
PCB (28)	mg/kg Ms				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB (52)	mg/kg Ms				<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB (101) PCB (118)	mg/kg Ms mg/kg Ms				<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	0.002	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001	<0.001	<0.001	<0.001 <0.001	<0.001 <0.001
PCB (138)	mg/kg Ms				0.001	0.001	<0.001	<0.001	0.006	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	<0.001	<0.001
PCB (153) PCB (180)	mg/kg Ms mg/kg Ms				0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	0.005	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001	<0.001	<0.001	0.002	<0.001 <0.001	<0.001 <0.001
Somme PCB (7)	mg/kg Ms				0.002	0.001	n.d.	n.d.	0.019	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.002	n.d.	n.d.

Tableau 8 : Résultats analytiques sur les sols qui resteront en place

		1								
Secteur de la zone d'étude Echantillons			Valeurs de référen	sas navu la nlamb	PR.69EN.21.0037 - 001 S6 (0,0-1,0 m)	\$25 (0,1-0,5 m)	S3E (0 E 0 9 m)	PR.69EN.22.0018-001 S25 (0,8-1,2 m)	\$26 (0,3-0,7 m)	\$26 (0,7-1,0 m)
Date de prélèvements			Valeurs de reieren	ces pour le plomb	21.06.2021	12.04.2022	S25 (0,5-0,8 m) 12.04.2022	12.04.2022	12.04.2022	12.04.2022
Faciès	Unité	Bruit de fond géochimique (I)			Sables et limons graveleux marron	Sable graveleux marron	Sable graveleux marron noirâtre	Sable graveleux beige	Sable graveleux marron	Sable limono-graveleux gris
Indice organoleptique			Valeur de vigilance	V aleur seuil		-	Couleur noirâtre et Mâchefer	-	-	-
D										
Paramètre	%				91,3	87.7	87.5	96.1	90.5	91.6
Matière sèche COT Carbone Organique Total	mg/kg Ms				71,3	13000	67.3	76.1	5300	71.0
Métaux Lourds	1116/1/6 1 13					.5555			3300	
Arsenic	mg/kg Ms	25			650	3000	4100	57	100	36
Cadmium	mg/kg Ms	0.45			6.2	15	3.3	0.5	0.5	0.1
Chrome	mg/kg Ms	90			17	11	16	16	14	6.7
Cuivre	mg/kg Ms	20			1300	4900	1200	52	130	34
Mercure	mg/kg Ms	0.1			15.4	0.48	0.26	<0.05	5.07	2.55
Nickel Plomb	mg/kg Ms mg/kg Ms	60 50	100	300	9.8 1500	120	12 61	3.8	9.2	3.6 63
Zinc	mg/kg Ms	100	100	300	1600	5000	1200	130	150	44
Composés Organo Halogénés Volat										
Chlorure de Vinyle	mg/kg Ms				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dichlorométhane	mg/kg Ms				<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05
Trichlorométhane	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tétrachlorométhane	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroéthylène	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tétrachloroéthylène I,I,I-Trichloroéthane	mg/kg Ms mg/kg Ms				<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
I,I,2-Trichloroethane	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
I,I-Dichloroéthane	mg/kg Ms				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
I,2-Dichloroéthane	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
cis-1,2-Dichloroéthène	mg/kg Ms				<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
I,I-Dichloroéthylène	mg/kg Ms				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Trans-1,2-Dichloroéthylène	mg/kg Ms				<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms				n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
BTEX	mallie M				<0.05	<0.050	<0.05	<0.05	<0.050	<0.05
Benzène Toluène	mg/kg Ms mg/kg Ms				<0.05	<0.050	<0.05	<0.05	<0.050	<0.05
Ethylbenzène	mg/kg Ms				<0.05	<0.050	<0.05	<0.05	<0.050	<0.05
m,p-Xylène	mg/kg Ms				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylène	mg/kg Ms				< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Somme Xylènes	mg/kg Ms				n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Somme BTEX	mg/kg Ms				n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures Volatils		1				ī				ī
Fraction aliphatique C5-C6	mg/kg Ms				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction aliphatique >C6-C8	mg/kg Ms				<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20
Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10	mg/kg Ms mg/kg Ms				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction aromatique > C8-C10	mg/kg Ms				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction >C6-C8	mg/kg Ms				<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Fraction C8-C10	mg/kg Ms				<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Fraction C5-C10	mg/kg Ms				0, >	0,1>	< .0	0.1>	<1.0	< .0
Hydrocarbures Totaux										
Hydrocarbures totaux C10-C40	mg/kg Ms				120	<20.0	<20.0	<20.0	22.5	<20.0
Fraction C10-C12	mg/kg Ms				<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Fraction C12-C16 Fraction C16-C20	mg/kg Ms mg/kg Ms				5.I 25.I	<4.0 <2.0	<4.0 <2.0	<4.0 <2.0	<4.0 3.8	<4.0 <2.0
Fraction C20-C24	mg/kg Ms				23.1	<2.0	<2.0	<2.0	3.8	5.3
Fraction C24-C28	mg/kg Ms				32	2.9	<2.0	<2.0	5	3.6
Fraction C28-C32	mg/kg Ms				24	2.3	<2.0	<2.0	4.6	<2.0
Fraction C32-C36	mg/kg Ms				9.2	<2.0	<2.0	<2.0	3	<2.0
Fraction C36-C40	mg/kg Ms				2.5	<2.0	<2.0	<2.0	<2.0	<2.0
Hydrocarbures Aromatiques Polycy		P)			Z0.050	20.050	-0.050	Z0.050	-0.050	Z0.050
Acénaphtylène Acénaphtène	mg/kg Ms mg/kg Ms				<0.050 0.26	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Fluorène	mg/kg Ms				0.22	<0.050	<0.050	<0.050	<0.050	<0.050
Pyrène	mg/kg Ms				3.3	0.5	0.1	<0.050	0.67	0.13
Benzo(b)fluoranthène	mg/kg Ms				1.3	0.19	<0.050	<0.050	0.35	0.076
Dibenzo(a,h)anthracène	mg/kg Ms				0.13	<0.050	<0.050	<0.050	0.06	<0.050
Anthracène	mg/kg Ms				0.59	0.087	<0.050	<0.050	0.13	<0.050
Benzo(a)anthracène	mg/kg Ms				1.5	0.22	<0.050	<0.050	0.36	0.082
Benzo(a)pyrène	mg/kg Ms				1.4	0.18	<0.050	<0.050	0.33	0.076
Benzo(k)fluoranthàna	mg/kg Ms				0.69	0.14	<0.050 <0.050	<0.050 <0.050	0.19	0.073 <0.050
Benzo(k)fluoranthène Chrysène	mg/kg Ms mg/kg Ms				1.3	0.095	<0.050	<0.050	0.17	0.076
Fluoranthène	mg/kg Ms				3.6	0.57	0.19	<0.050	0.83	0.076
Indéno(1,2,3-cd)pyrène	mg/kg Ms				0.92	0.17	<0.050	<0.050	0.27	0.059
Naphtalène	mg/kg Ms	0.15			<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Phénanthrène	mg/kg Ms				3.5	0.46	0.15	<0.050	0.63	0.12
Somme HAP (6)	mg/kg Ms				8.91	1.35	0.19	n.d.	2.14	0.454
Somme HAP (VROM)	mg/kg Ms				14.5	2.14	0.34	n.d.	3.26	0.656
Somme HAP (EPA)	mg/kg Ms	14.7			19.7	2.83	0.44	n.d.	4.34	0.862
PCB (28)	mg/kg Ms				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB (28) PCB (52)	mg/kg Ms				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB (101)	mg/kg Ms				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB (118)	mg/kg Ms				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB (138)	mg/kg Ms				0.001	0.001	<0.001	<0.001	<0.001	<0.001
PCB (153)	mg/kg Ms				0.001	0.001	<0.001	<0.001	<0.001	100.0>
PCB (180)	mg/kg Ms				0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Somme PCB (7)	mg/kg Ms				0.003	0.002	n.d.	n.d.	n.d.	n.d.

Tableau 9 : Résultats analytiques sur les sols qui resteront en place

Date de prélèvements 21.06.2021 21.06.2021 21.06.2021 12.04.2022 1	Secteur de la zone d'étude						PR.69EN.2	1.0037 - 001					PR.69EN.22.0018-001			
Part	Echantillons			Valeurs de référen	ices pour le plomb					,	(, , ,	(, , ,		(, , ,		\$29 (1,00-1,55 m)
Martin	Date de prélèvements	-				21.06.2021		21.06.2021	21.06.2021	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022
Part	Faciès	Unité	géochimique (I)	Valeur de vigilance	Valour souil		gris avec graves et débris	Sables graveleux beiges	Limons graveleux marron	Sable graveleux marron				_		Argile gravelo-sableuse marron humide
March Marc	Indice organoleptique			varear de vignance	valear sean	-					-	-		-	Odeur de brûlé	-
STATE OF THE STATE	Paramètre															
Marchan 1985						88,4	91,2	92,9	91,5		91.6	93.1	96.4	95.4	88.9	87.7
Second S		mg/kg Ms				-	-	-	-	5300	-	-	-	-	-	-
Second		mg/kg Ms	25			7.5	17	12	21	100	36	100	26	3.9	6	5.2
Martin	Cadmium															
Second S																
Year 19																
Second	Nickel	+														
Second		+		100	300											
Security Column						·-	250	3,	J			520			20	
Second Column	Chlorure de Vinyle	mg/kg Ms														
Management 1940	<u> </u>															
Cartelland Car																
13	Trichloroéthylène	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Commercial Commercia	-															
Manufacture 1978																
March 1988 1989		-														
Control Cont		+														
Page		+														
## MATCH MATCH	·	+														
Page	·	mg/kg Ms				n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
March Marc		ma/ka Me				<0.05	<0.05	<0.05	<0.05	<0.050	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Company Comp																
Section Control Cont		mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.050	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Company Comp																
Company Comp																
March 1999 Mar																
Manus Manu		1						1		1	T					
Marie Agency Color		+														
Processor Proc		+														
Page	Fraction aliphatique >C8-C10															
Proceed CAGO Program Process																
Mysochest Foldow Mysochest Stand Mysochest		-														
Process Confect Process Proces	Fraction C5-C10	mg/kg Ms				< .0	<1.0	< .0	< .0	<1.0	<1.0	< .0	<1.0	< .0	< .0	< .0
From Cel-Cel 1 mg/kg	•					26.1	42.7	-20.0	25.4	22.5	-20.0	150	-20.0	-20.0	27.4	110
Finance CLCICI mplg file								<4.0			<4.0		<4.0	<4.0		
Frame CHCH	Fraction CI2-CI6	mg/kg Ms														
France CR-CR-CR-CR-CR-CR-CR-CR-CR-CR-CR-CR-CR-C																
Trace CRCSC complete compl																
Professor Prof										4.6					7.6	
Marican Annual pass		+														
Acceptance Angle No. Acceptance Acceptan			2)			<2.0	2.4	<2.0	2.6	<2.0	<2.0	2.8	<2.0	<2.0	4./	12.5
Processes		mg/kg Ms														
Process Proc																
Demotyle mg/kg m		+														
Authoride		mg/kg Ms					1.4	0.062	0.58	0.35	0.076	3.1	0.56			
Semololypythine mylkg Ms																
Demock/Milorambine mg/kg Ms																
Chrysine mg/kg Ms																
Floranchine mg/kg Ms																
Indiano(1,2,3-cd)pyrshe mg/kg Ms	·	+														
Prienanthriene mg/kg Ms		mg/kg Ms				< 0.050	1.2	<0.050	0.36	0.27	0.059	2.7	0.51	<0.050	<0.050	<0.050
Somme HAP (6) mg/kg Ms		-	0.15													
Somme HAP (VROM) mg/kg Ms 14.7 n.d. 12.3 0.356 4.47 3.26 0.656 44.7 7.6 0.22 n.d. 0.257 Somme HAP (EPA) mg/kg Ms 14.7 n.d. 17.2 0.494 6.12 4.34 0.862 58.4 10 0.32 n.d. 0.467 PCB PCB (28) mg/kg Ms 0 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001																
PCB (28) mg/kg Ms	Somme HAP (VROM)	mg/kg Ms				n.d.	12.3	0.356	4.47	3.26	0.656	44.7	7.6	0.22	n.d.	0.257
PCB (28) mg/kg Ms		mg/kg Ms	14.7			n.d.	17.2	0.494	6.12	4.34	0.862	58.4	10	0.32	n.d.	0.467
PCB (52) mg/kg Ms <.0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 </td <td></td> <td>mg/kg Ms</td> <td></td> <td></td> <td></td> <td><0.001</td>		mg/kg Ms				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB (118) mg/kg Ms <.0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001<	- ' '						<0.001									
PCB (138) mg/kg Ms 0.003 0.004 < 0.001 0.003 < 0.001 < 0.001 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0																
PCB (153) mg/kg Ms 0.003 0.003 0.003 0.001 0.003 0.001																
Somme PCB (7) mg/kg Ms 0.009 0.011 n.d. 0.011 n.d. 0.004 n.d. n.d. n.d. n.d. n.d.																
	Somme PCB (7)	mg/kg Ms				0.009	0.011	n.d.	0.011	n.d.	n.d.	0.004	n.d.	n.d.	n.d.	n.d.

Tableau 10 : Résultats analytiques sur les sols qui resteront en place

Secteur de la zone d'étude					PR.69EN.2	1.0037 - 001				
Echantillons			Valeurs de référen	ces pour le plomb	S9 (0,0-0,3 m)	\$9 (0,3-0,8 m)	\$27 (0,3-0,9 m)	\$30 (0,0-0,4 m)	\$30 (0,4-1,0 m)	\$30 (1,0-2,0 m)
Date de prélèvements Faciès	Unité	Bruit de fond géochimique (I)			21.06.2021 Couche de forme (sables graveleux)	21.06.2021 Limon sablo-graveleux marron	12.04.2022 Limon gravelo-sableux marron	Couche de forme gravelo- sablese beige	12.04.2022 Sable graveleux beige	Sable graveleux beige
Indice organoleptique			Valeur de vigilance	Valeur seuil	-		Débris de verre	-	-	
Paramètre	1									
Matière sèche COT Carbone Organique Total	% mg/kg Ms				98,4	93,7	93.7 19000	98.3 1100	95.6	97
Métaux Lourds	IIIg/Rg I-IS					-	17000	1100		
Arsenic	mg/kg Ms	25			13	180	32	1.3	4	1.6
Cadmium	mg/kg Ms	0.45			0.3	7.1	0.3	0.2	1.7	0.2
Chrome Cuivre	mg/kg Ms mg/kg Ms	90			7.2 36	37 1400	14 37	3.1 1.3	19 33	8.5 1.8
Mercure	mg/kg Ms	0.1			0.31	1.1	0.75	<0.05	<0.05	<0.05
Nickel	mg/kg Ms	60			5.7	23	8.6	1.6	5.5	2.4
Plomb	mg/kg Ms	50 100	100	300	26 55	460	100	7.8	3 470	1.9
Zinc Composés Organo Halogénés Volat	mg/kg Ms	100			55	2700	61	7.8	470	63
Chlorure de Vinyle	mg/kg Ms				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dichlorométhane	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Trichlorométhane Tétrachlorométhane	mg/kg Ms mg/kg Ms				<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Trichloroéthylène	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Tétrachloroéthylène	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
I,I,I-Trichloroéthane	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
I,I,2-Trichloroéthane I,I-Dichloroéthane	mg/kg Ms mg/kg Ms				<0.05 <0.10	<0.05 <0.10	<0.05	<0.05 <0.10	<0.05 <0.10	<0.05 <0.10
1,2-Dichloroéthane	mg/kg Ms				<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
cis-1,2-Dichloroéthène	mg/kg Ms				<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
I,I-Dichloroéthylène	mg/kg Ms				<0.10 <0.025	<0.10 <0.025	<0.10 <0.025	<0.10 <0.025	<0.10 <0.025	<0.10 <0.025
Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes	mg/kg Ms mg/kg Ms				<0.025 n.d.	<0.025 n.d.	<0.025 n.d.	<0.025 n.d.	<0.025 n.d.	<0.025 n.d.
ВТЕХ	3 3									
Benzène	mg/kg Ms				<0.05	<0.05	<0.050	<0.050	<0.05	<0.05
Toluène Ethylbenzène	mg/kg Ms mg/kg Ms				<0.05 <0.05	<0.05 <0.05	<0.050 <0.050	<0.050 <0.050	<0.05 <0.05	<0.05 <0.05
m,p-Xylène	mg/kg Ms				<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylène	mg/kg Ms				<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Somme Xylènes	mg/kg Ms				n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Somme BTEX Hydrocarbures Volatils	mg/kg Ms				n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Fraction aliphatique C5-C6	mg/kg Ms				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction aliphatique >C6-C8	mg/kg Ms				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10	mg/kg Ms mg/kg Ms				<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20
Fraction aromatique >C8-C10	mg/kg Ms				<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fraction >C6-C8	mg/kg Ms				<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Fraction C8-C10 Fraction C5-C10	mg/kg Ms mg/kg Ms				<0.40 <1.0	<0.40 <1.0	<0.40	<0.40 <1.0	<0.40 <1.0	<0.40 <1.0
Hydrocarbures Totaux	IIIg/Ng I IS				1.0	1.0	1.0	1.0	1.0	1.0
Hydrocarbures totaux C10-C40	mg/kg Ms				<20.0	50.3	61.2	<20.0	<20.0	<20.0
Fraction C10-C12	mg/kg Ms				<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Fraction C12-C16 Fraction C16-C20	mg/kg Ms mg/kg Ms				<4.0 <2.0	<4.0 8.1	<4.0 5.8	<4.0 <2.0	<4.0 <2.0	<4.0 <2.0
Fraction C20-C24	mg/kg Ms				<2.0	12.1	7.8	<2.0	<2.0	<2.0
Fraction C24-C28	mg/kg Ms				<2.0	11.7	10.6	<2.0	<2.0	<2.0
Fraction C28-C32 Fraction C32-C36	mg/kg Ms mg/kg Ms				<2.0 <2.0	9.1 4.5	13	<2.0 <2.0	<2.0 <2.0	<2.0 <2.0
Fraction C36-C40	mg/kg Ms				<2.0	<2.0	8.6	<2.0	<2.0	<2.0
Hydrocarbures Aromatiques Polyc		')			_					
Acénaphtylène	mg/kg Ms				<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Acénaphtène Fluorène	mg/kg Ms mg/kg Ms				<0.050	0.066	0.081	<0.050	<0.050	<0.050
Pyrène	mg/kg Ms				0.25	3.2	1.5	<0.050	<0.050	<0.050
Benzo(b)fluoranthène	mg/kg Ms				0.11	1.9	1.1	<0.050	<0.050	<0.050
Dibenzo(a,h)anthracène Anthracène	mg/kg Ms mg/kg Ms				<0.050 <0.050	0.25 0.27	<0.50 0.32	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Benzo(a)anthracène	mg/kg Ms				0.13	1.8	1.2	<0.050	<0.050	<0.050
Benzo(a)pyrène	mg/kg Ms				0.16	2.3	I	<0.050	<0.050	<0.050
Benzo(g,h,i)pérylène Benzo(k)fluoranthène	mg/kg Ms mg/kg Ms				0.12 0.071	1.4	0.82	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Chrysène	mg/kg Ms				0.12	1.5	1.2	<0.050	<0.050	<0.050
Fluoranthène	mg/kg Ms				0.24	3.3	2.1	<0.050	<0.050	<0.050
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0.15			0.12	1.5	0.91	<0.050	<0.050	<0.050
Naphtalène Phénanthrène	mg/kg Ms mg/kg Ms	0.15			<0.050 0.13	<0.050	0.074 1.2	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Somme HAP (6)	mg/kg Ms				0.821	11.4	6.51	n.d.	n.d.	n.d.
Somme HAP (VROM)	mg/kg Ms				1.09	14.7	9.4	n.d.	n.d.	n.d.
Somme HAP (EPA) PCB	mg/kg Ms	14.7			1.45	20.1	12.1	n.d.	n.d.	n.d.
PCB (28)	mg/kg Ms				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PCB (52)	mg/kg Ms				0.004	<0.001	<0.001	<0.001	<0.001	<0.001
PCB (101)	mg/kg Ms				0.006	<0.001	0.004	<0.001	<0.001	<0.001
PCB (118) PCB (138)	mg/kg Ms mg/kg Ms				0.007 0.012	<0.00 l <0.00 l	0.002	<0.00 l <0.00 l	<0.001 <0.001	<0.001 <0.001
PCB (153)	mg/kg Ms				0.015	<0.001	0.009	<0.001	<0.001	<0.001
PCB (180)	mg/kg Ms				0.007	<0.001	0.006 0.03	<0.001	<0.001	<0.001
Somme PCB (7)	mg/kg Ms				0.051	n.d.		n.d.	n.d.	n.d.

E.9. Interprétation des résultats des terres qui resteront en place

Les analyses réalisées au droit de ces échantillons mettent en évidence les constats suivants.

SECTEUR DES ANCIENNES CHAMBRES DE PLOMB (SONDAGES \$21, \$22, \$23 ET \$24):

- Présence d'anomalie concentrée en métaux et notamment en arsenic, mercure et plomb dont les valeurs maximales sont respectivement de 2 500 mg/kg MS, 3 200 mg/kg MS et 47 000 mg/kg MS.
- A noter que les anomalies en plomb identifiées sur cette zone dépassent la valeur seuil donnée par le HSCP d'un facteur compris entre 8 et 156.
- L'anomalie en plomb observé au droit de S3 a été délimitée uniquement en direction du nord (par S21).
- Absence de quantification des COHV, BTEX et C5-C16.
- Présence d'HCT C₁₆-C₄₀ et de traces en HAP. On note toutefois la présence d'anomalies ponctuelles en HAP et naphtalène au droit des échantillons prélevés lors de la réalisation du sondage S24.
 - ⇒ Bilan : pollution principalement en métaux lourds ayant pour origine les chambres de plomb et dépôts de matériaux de construction et démolition.

SECTEUR DU BASSIN D'EAU ET DES DEPOTS DE MATERIAUX INCONNUS (SONDAGES S25, S26, S27, S29 ET S30):

- Présence d'anomalies en métaux dont :
 - des anomalies en mercure quantifiées entre 0,17 et 5,07 mg/kg MS,
 - des dépassements de la valeur de vigilance en plomb de l'HSCP,
 - des anomalies en arsenic et cuivre dont la valeur maximale quantifiée est de 245 fois le bruit de fond géochimique au droit de S25; l'impact au droit du sondage S6 n'est pas délimité compte tenu de la présence d'impacts en S25 et S26.
 - absence d'impact en S27 et S30 : l'impact au droit du S9 est délimité.
- Absence de quantification en COHV, BTEX, HV C₅-C₁₆.
- Présence d'HCT C16-C40 à des quantifications restant de l'ordre de grandeur de la limite de quantification du laboratoire et de traces de PCB.
- Absence d'anomalie en HAP et naphtalène.
 - ⇒ Bilan : pollution en métaux issue du remblaiement du bassin

SECTEUR DE LA REMISE DE LOCOMOTIVE (SONDAGES S28):

- Présence d'anomalies en métaux et notamment en mercure (quantification de 2 mg/kg MS au droit de l'échantillon S28 (0,0-0,7 m)).
- Présence d'un dépassement de la valeur de vigilance en plomb au droit de l'échantillon \$28 (0,0-0,7 m).

- Absence de quantification en BTEX, COHV et HV C₅-C₁₂.
- Quantification en C12-C40 de 150 mg/kg MS dans l'échantillon superficiel, et délimité en profondeur.
- Présence d'une anomalie en HAP et naphtalène au droit de l'échantillon de surface ainsi que des traces en PCB.
 - ⇒ Bilan : présence d'anomalie en métaux et de composés organiques due à l'ancienne activité.

La synthèse cartographique des anomalies / impacts dans les sols est présentée dans la Figure 5.

•

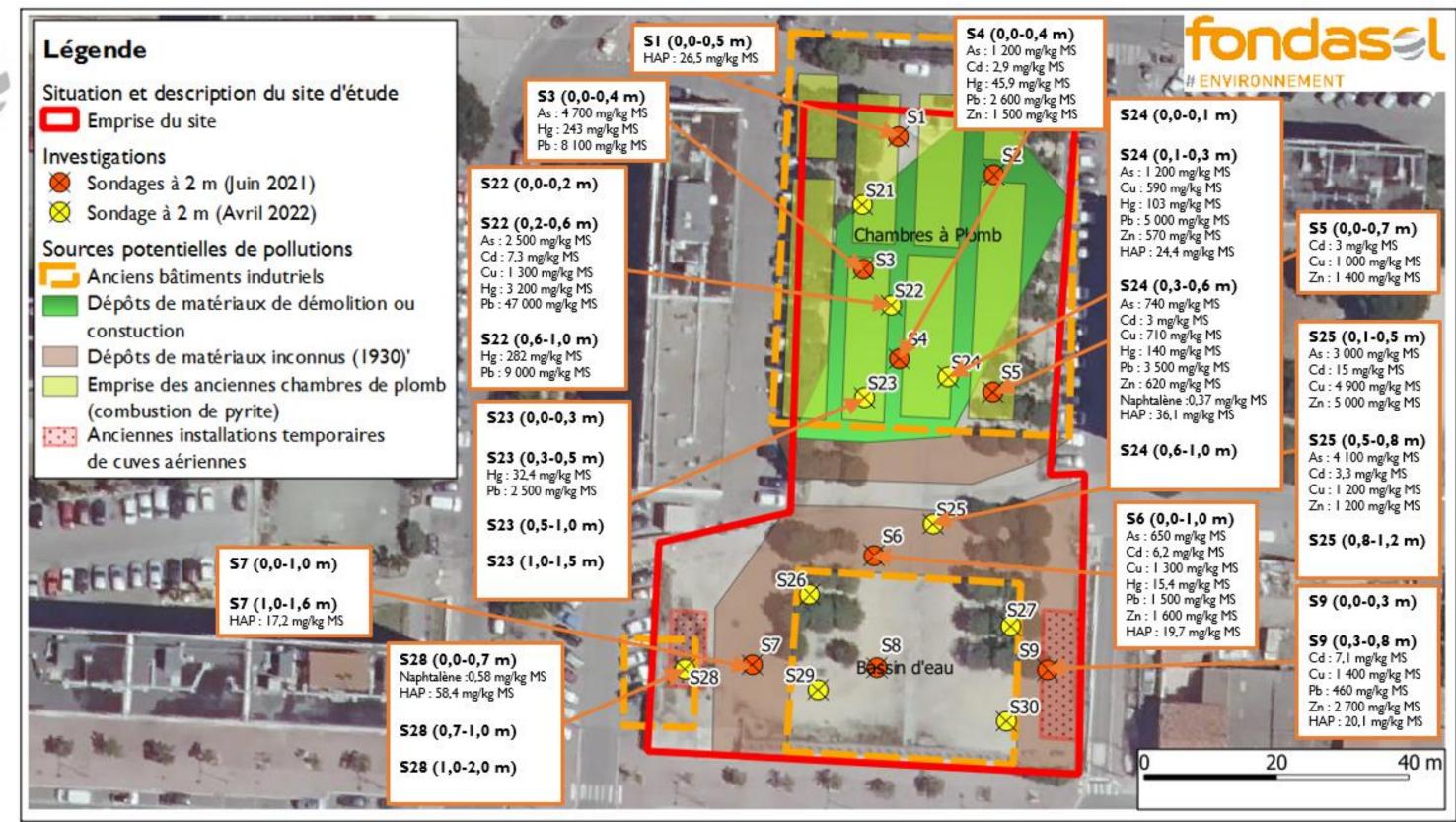


Figure 5 : Synthèse cartographique des teneurs remarquables sur les sols qui resteront en place

Nota : on entend par teneur remarquable toute teneur sensiblement supérieure aux autres données sur le site (percentile 80 pour l'arsenic, le cadmium, le cuivre, le mercure, le plomb et le zinc / bruit de fond BDsolU pour les HAP et le naphtalène).

E.10. Présentation des résultats des terres excavées pouvant éventuellement être excavées

Les bordereaux d'analyses sur les sols sont présentés en Annexe 7. Le Tableau II présente la synthèse des résultats et la comparaison aux valeurs de référence précitées.

Tableau II: Résultats analytiques sur les terres pouvant éventuellement être excavées

Secteur de la zone d'étude										Places des aigues de	ouces - Port de Bouc					
Echantillons					S21 (0,0-0,2 m)	S22 (0,0-0,2 m)	\$23 (0,0-0,3 m)	\$24 (0,0-0,1 m)	\$24 (0,3-0,6 m)	S25 (0,1-0,5 m)	S25 (0,5-0,8 m)	\$26 (0,3-0,7 m)	S27 (0,3-0,9 m)	\$28 (0,0-0,7 m)	S29 (0,00-1,00 m)	\$30 (0,0-0,4 m)
Date de prélèvements		Seuils ISDD - Décision	Seuils ISDND -	Seuils ISDI - Arrêté du	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022	12.04.2022
Faciès	Unité	CE 19/12/2002	Décision CE 19/12/2002	12/12/2014	Couche de forme gravelo- sableuse beige	- Couche de forme gravelo- sableuse beige	Couche de forme gravelo- sableuse beige	Couche de forme gravelo- sableuse	Limon gravelo-sableux noirâtre à gris foncé	Sable graveleux marron	Sable graveleux marron noirâtre	Sable graveleux marron	Limon gravelo-sableux marron	Limon gravelo-sableux marron	Argile gravelo-sableuse marron	Couche de forme gravelo sablese beige
Indice organoleptique					-	-	-	-	Couleur noirâtre	-	Couleur noirâtre et Mâchefer	-	Débris de verre	-	Odeur de brûlé	-
Paramètres	MANAGEMENT					•	•			•			•	•		•
Analyses sur brut																
Matière sèche	%	30	30		98.9	99	99	98.4	82.7	87.7	87.5	90.5	93.7	93.1	88.9	98.3
COT Carbone Organique Total	mg/kg Ms	60 000	50 000	30 000	3 000	5 500	1 900	2 200	-	13 000	-	5 300	19 000	-	-	1 100
Hydrocarbures Aromatiques Po						T	1	T			T	T		ı		
Somme HAP (EPA)	mg/kg Ms	500	100	50	n.d.	n.d.	n.d.	n.d.	36.1	2.83	0.44	4.34	12.1	58.4	n.d.	n.d.
BTEX																
Somme BTEX	mg/kg Ms		30	6	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures Totaux	melli M	10 000	2 000	500	<20.0	<20.0	<20.0	<20.0	120	<20.0	<20.0	22		150	27	<20.0
Hydrocarbures totaux C10-C40	mg/kg Ms	10 000	2 000	500	<20.0	<20.0	<20.0	<20.0	120	<20.0	<20.0	23	61	150	2/	<20.0
		F0	10			1	1			0.002	1	n d	0.03	0.004		
Somme PCB (7)	mg/kg Ms	50	10		n.d.	n.d.	n.d.	n.d.	n.d.	0.002	n.d.	n.d.	0.03	0.004	n.d.	n.d.
Analyses sur éluat																
1étaux Lourds		_	0.7	0.04							<u> </u>		1	ı		
Antimoine	mg/kg Ms	5	0.7	0.06	0 - 0.05	0 - 0.05	0 - 0.05	0 - 0.05	-	0 - 0.05	-	0 - 0.05	0.05	-	-	0 - 0.05
Arsenic	mg/kg Ms	25	2	0.5	0 - 0.05	0 - 0.05	0 - 0.05	0 - 0.05	-	0 - 0.05	-	0.32	0.31	-	-	0 - 0.05
Baryum	mg/kg Ms	300	100	20	0 - 0.1	0 - 0.1	0 - 0.1	0.16	-	0.1	-	0.31	0.11	-	-	0 - 0.1
Cadmium	mg/kg Ms	5	1	0.04	0 - 0.001	0 - 0.001	0 - 0.001	0 - 0.001	-	0.028	-	0 - 0.001	0 - 0.001	-	-	0 - 0.001
Chrome	mg/kg Ms	70	10	0.5	0 - 0.02	0 - 0.02	0 - 0.02	0 - 0.02	-	0 - 0.02	-	0.11	0 - 0.02	-	-	0 - 0.02
Cuivre	mg/kg Ms	100	50	2	0.05	0.03	0.03	0.03	-	0.32	-	0.47	0.1	-	-	0.02
Mercure	mg/kg Ms	2	0.2	0.01	0 - 0.0003	0 - 0.0003	0 - 0.0003	0 - 0.0003	-	0.0027	-	0.0007	0.0007	-	-	0 - 0.0003
Molybdène	mg/kg Ms	30	10	0.5	0 - 0.05	0 - 0.05	0 - 0.05	0 - 0.05	-	0 - 0.05	-	0.07	0.06	-	-	0 - 0.05
Nickel	mg/kg Ms	40	10	0.4	0 - 0.05	0 - 0.05	0 - 0.05	0 - 0.05	-	0 - 0.05	-	0 - 0.05	0 - 0.05	-	-	0 - 0.05
Plomb	mg/kg Ms	50	10	0.5	0 - 0.05	0 - 0.05	0 - 0.05	0 - 0.05	-	0 - 0.05	-	0 - 0.05	0 - 0.05	-	-	0 - 0.05
Sélénium	mg/kg Ms	7	0.5	0.1	0 - 0.05	0 - 0.05	0 - 0.05	0.65	-	0.09	-	0.09	0 - 0.05	-	-	0 - 0.05
Zinc	mg/kg Ms	200	50	4	0 - 0.02	0 - 0.02	0.02	0 - 0.02	-	16.0	-	0 - 0.02	0.03	-	-	0 - 0.02
Balance ionique						1	1									
oH		entre 5 et 13	000		8.2	9.5	8.5	8.2	-	7.7	-	11.4	9.2	-	-	9.5
СОТ	mg/kg Ms	1 000	800	500	22	0 - 10	18	13	-	0 - 10	-	39	15	-	-	0 - 10
raction soluble	mg/kg Ms	100 000	60 000	4 000	0 - 1000	0 - 1000	0 - 1000	1 300	-	26 000	-	7 300	1 300	-	-	0 - 1000
Chlorures 	mg/kg Ms	25 000	1 500	800	49	37	37	64	-	12	-	190	23	-	-	30
Fluorures	mg/kg Ms	500	150	10	1	I and	I	2	-	15	-	2	5	-	-	1
Sulfates	mg/kg Ms	50 000	20 000	1 000	98	230	75	430	-	13 000	-	2 700	470	-	-	100
ndice phénol	mg/kg Ms	100	50		0 - 0.1	0 - 0.1	0 - 0.1	0 - 0.1	-	0 - 0.1	-	0 - 0.1	0 - 0.1	-	-	0 - 0.1
Filière d'évacuation possible					ISDI	ISDI	ISDI	ISDD	ISDND	ISDND	ISDND	ISDND	ISDI	ISDND	ISDND	ISDI
Filière d'évacuation à envisager	nour une ontimi	isation financière (à vérif	fier préalablement augus	s des filières)	ISDI	ISDI	ISDI	ISDD	ISDI	ISDND	ISDI	ISDI+	ISDI	Riocentre	ISDI	ISDI
rillere u evacuation a envisager	pour une optim	isacion imanciere (a verif	ner prealablement aupres	s des illieres)	וטטו	וטטו	וטטו	טטט	IJUI	טאטנו	IJUI	+וענו	וטטו	biocentre	וטטו	וטמ

E.11. Interprétation des résultats des terres qui seront excavées dans le cadre du projet

Rappelons que pour les échantillons S24 (0,3-0,6 m), S25 (0,5-0,8 m), S28 (0,0-0,7 m) et S29 (0,0-1,0 m), seule la réalisation de pack analytique conforme aux critères de l'arrêté du 12/12/2014 permettraient d'identifier avec précision les filières d'évacuations. Celles données dans le tableau ci-dessus sont celles qui sont identifiées en l'état des connaissances des indices organoleptiques et des valeurs sur brut.

Les analyses ont mis en évidence la présence de dépassements de certains critères de l'arrêté du 12 décembre 2014 relatif aux Installations de Stockage de Déchets Inertes (ISDI): HAP sur brut, sélénium, zinc, fraction soluble, fluorures et sulfates sur éluat.

Conformément à l'article 6 de l'arrêté du 12 décembre 2014 relatif aux ISDI, une adaptation des critères d'acceptation peut être utilisée pour permettre le stockage de déchets dont la composition correspond au fond géochimique local. Sont considérées comme acceptables en filière ISDI dite aménagée (ISDI+) des terres présentant des teneurs sur lixiviats ne dépassant pas 3 fois les valeurs limites sur la lixiviation des critères d'acceptation initiaux.

La synthèse cartographique des teneurs non inertes est présentée dans la Figure 6.

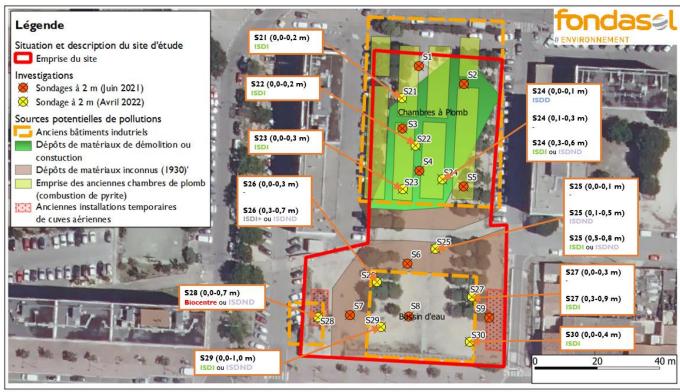


Figure 6 : Synthèse cartographique des résultats d'analyses sur les terres pouvant être excavées

F. INVESTIGATIONS SUR LES EAUX SOUTERRAINES (A210)

F.1. Rappel du contexte et objectifs des prélèvements des eaux souterraines

Compte tenu de la forte vulnérabilité des eaux souterraines identifiée au droit du site lors de l'étude de vulnérabilité et sensibilité des milieux (étude PR.69EN.21.0037 – Pièce n°001), ce milieu a été investigué.

F.2. Pose des ouvrages / renforcement du réseau piézométrique

Afin de répondre aux objectifs de cette étude, 3 piézomètres ont été posés au droit du site.

Compte tenu de la profondeur de nappe attendue au droit du site, les piézomètres étaient prévus à une profondeur de 5 m. Compte tenu de l'absence d'eau dans les forages à cette profondeur, ces derniers ont été continués jusqu'à une profondeur comprise entre 8 et 9 m.

Au regard des sens d'écoulement théoriques identifiés préalablement (écoulement théorique des eaux souterraines du nord vers le sud), il a été réalisé I piézomètre en amont théorique et 2 piézomètres en aval théorique.

Aucun fluide de forage n'a été utilisé pour la création des piézomètres.

Un ingénieur spécialisé en sites et sols pollués a supervisé le suivi et la pose des piézomètres afin qu'ils répondent aux exigences des normes en vigueur et permettent d'obtenir un point de prélèvement représentatif des eaux souterraines et a procédé au relevé des coupes lithologiques.

La Figure 7 précise la localisation des piézomètres. Les coupes de forages et d'équipements des piézomètres sont présentées en Annexe 8.

F.3. Définition du réseau piézométrique

Le réseau de surveillance des eaux souterraines retenu pour la campagne de prélèvements dans le cadre de cette étude est présenté dans le Tableau 12.

Les ouvrages ont été nivelés en relatif. Le niveau du PZI a été choisi arbitrairement comme correspondant à une cote (z) de 100.

Tableau 12 : Coordonnées de points de prélèvements des eaux souterraines

Points de prélèvement	Coordonnées géographiques en WGS 84 : 4326								
roints de preievement	X	Y	Z						
PZI	4,9764551	43,4026821	100						
PZ2	4,9760842	43,4019187	99,645						
PZ3	4,9767855	43,4018785	99,710						

Le niveau piézométrique a été mesuré dans l'ensemble des ouvrages le 20/04/2022. Les résultats sont donnés dans le Tableau 13.

Tableau 13 : Mesures piézométriques

Ouvrage	Cote du repère (m)	Nature du repère	Niveau nappe / repère (m)	Epaisseur de flottant (m)	Cote de la nappe (m)	Implantation / positionnement					
	Campagne du 20/04/2022										
PZI	100	Point de mesure du	A sec (profondeur de l'ouvrage : 9,6)		< 90,400	Amont théorique					
PZ2	99,645	niveau statique	6,95	Aucun	92,695	Aval théorique					
PZ3	99,710	3	6,97		92,740	Aval théorique					

Au regard de ces mesures, il est difficile de déterminer un sens d'écoulement puisque le PZI était sec lors des investigations. Une première hypothèse pourrait être que le sens d'écoulement des eaux souterraines se fait en direction du nord. Cependant, ce sens serait en contradiction avec le sens d'écoulement théorique (du nord vers le sud). Au vu de la lithologie de cet aquifère, ce dernier pourrait contenir des failles venant perturber l'écoulement des eaux souterraines (aquifère karstique).

Ainsi aucune carte piézométrique ne sera présentée en l'état.

Figure 7 : Plan de localisation des piézomètres sur carte topographique au 1/25 000 (IGN) et sur photographies aériennes

F.4. Déroulement de la campagne de prélèvements des eaux souterraines

Les prélèvements ont été réalisés le 20/04/2022 par un ingénieur du Département Environnement de FONDASOL. Seuls les ouvrages situés en aval théorique ont été prélevés (absence d'eau dans le piézomètre amont) en commençant par le PZ2.

Les observations de terrain (aspect, couleur, paramètres physico-chimiques, ...) sont reportées dans les fiches de prélèvement présentées en Annexe 9.

Compte tenu de l'absence de produit flottant ou plongeant, les prélèvements d'eau ont été effectués au moyen d'un pompage permettant de renouveler jusqu'à stabilisation des paramètres physico-chimiques de façon à constituer un échantillon représentatif de la qualité des eaux souterraines. Les eaux de purge ont été rejetées dans le milieu naturel après passage sur un support de filtration adapté (filtre à charbon actif portatif).

Les eaux prélevées n'ont pas été filtrées sur site. La filtration a été réalisée au laboratoire avant l'analyse des métaux. Le stabilisant présent dans le flaconnage adapté aux métaux a donc été vidé.

FONDASOL a veillé au bon état du matériel utilisé pour la réalisation des prélèvements. Il a été utilisé du matériel à usage unique pour la réalisation des prélèvements (pompes 12 V avec tuyau à usage unique).

Dès leur prélèvement, les échantillons ont été conditionnés dans des flaconnages spécifiques fournis par le laboratoire (cf. Annexe 5), étiquetés sur site afin d'en assurer la traçabilité et stockés en atmosphère réfrigérée afin d'assurer leur bonne conservation jusqu'à leur arrivée au laboratoire d'analyses.

Les échantillons ont été analysés par le laboratoire AGROLAB, accrédité par le RvA – Raad voor Accreditatie – conformément aux critères des laboratoires d'analyses ISO/IEC 17025 :2017, accréditation reconnue par le COFRAC.

F.5. Programme analytique sur les eaux souterraines

L'objectif des investigations dans les eaux souterraines est de déterminer la présence ou non d'impact engendré par la présence des pollutions en métaux observées au droit du site lors du diagnostic initiale.

Le programme analytique est défini dans le Tableau 14.

Les propriétés physico-chimiques des composés recherchés sont présentées en Annexe 4 et les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé en Annexe 5.

	Paramètres recherchés								
Piézomètres	НСТ	HV	НАР	втех	сону	8 ETM	РСВ		
PZI		Aucu	n échantil	on n'a été	réalisé (ouvr	age sec)			
PZ2	X	X	X	Х	Х	Х	X		
PZ3	Х	Х	Х	Х	Х	Х	Х		

Tableau 14: Descriptif du programme analytique sur les eaux souterraines

Les abréviations des composés / packs analytiques proposés sont décrites en Annexe 2.

F.6. Valeurs de référence pour les eaux souterraines

Les résultats des analyses d'eaux souterraines sont comparés³ :

- aux valeurs seuils de l'Annexe II de l'Arrêté du II janvier 2007 (modifié par l'arrêté du 4 août 2017), qui constituent les limites de qualité des eaux brutes de toute origine utilisées pour la production d'eau destinée à la consommation humaine, à l'exclusion des eaux de source conditionnées, pris en application des dispositions prévues aux articles R. 1321-7(II), R. 1321-17 et R.1321-42 du Code de Santé Publique; ces valeurs sont communément appelées « limites de potabilisation des eaux » et s'appliqueraient effectivement si un captage d'eau potable était réalisé au niveau du piézomètre considéré;
- aux valeurs de la directive (UE) 2020/2184 du 16/12/2020 modifiant la directive 98/83/CE;

Les valeurs de comparaison retenues sont rappelées dans les premières colonnes des tableaux des résultats d'analyses.

F.7. Présentation des résultats des eaux souterraines

Le bordereau d'analyses sur les eaux souterraines est présenté en Annexe 10. Le Tableau 15 présente la synthèse des résultats.

FONDASOL - PR.69EN.22.0018 - 001 - 1ère diffusion

³ conformément au rapport de « synthèse des données réglementaires pour les substances chimiques, en vigueur dans l'eau, les denrées alimentaires et dans l'air en France au 30 juin 2020 » - rapport 20-200358-2190502-v 1.0 du 19/10/2020

Tableau 15 : Résultats analytiques sur les eaux souterraines

		Directive (UE) 2020/2184 du 16/12/2020 modifiant la directive 98/83/CE	Arrêté du II janvier 2007, modifié par l'arrêté du 4 août 2017			
Paramètre	Unité	Eaux destinées à la	Eaux brutes utilisées pour la prooduction d'eau desrtinée à la consommation humaine	PZ2	PZ3	
		consommation humaine	(annexe II)			
Métaux lourds	,,	10	100	.5.0	-5-0	
Arsenic Cadmium	μg/l μg/l	10 5	100	<5.0 <0.10	<5.0 <0.10	
Chrome	μg/l	50	50	<2.0	<2.0	
Cuivre Mercure	μg/l	2000	-	<2.0 <0.030	<2.0 <0.030	
Nickel	μg/l μg/l	20	-	<5.0	<5.0	
Plomb	μg/l	10	50	<5.0	<5.0	
Zinc	μg/l	-	5000	3.8	7.1	
Composés Organo Halogénés Volatils (C Dichlorométhane	μg/l	-	-	<0.5	<0.5	
Tétrachlorométhane	µg/l	-	-	<0.1	<0.1	
Trichlorométhane	μg/l	-	-	<0.5	<0.5	
I,I-Dichloroéthane I,2-Dichloroéthane	μg/l μg/l	3	-	<0.5 <0.5	<0.5 <0.5	
I,I,I-Trichloroéthane	μg/l	-	-	<0.5	<0.5	
1,1,2-Trichloroéthane	μg/l	-	-	<0.5	<0.5	
I,I- Dichloroéthylène Chlorure de Vinyle	μg/l μg/l	0.5	-	<0.1	<0.1 <0.2	
Cis-1,2-Dichloroéthène	μg/l	-	-	<0.50	<0.50	
Trans-1,2-Dichloroéthylène	μg/l	-	-	<0.50	<0.50	
Trichloroéthylène Tétrachloroéthylène	µg/l ug/l	- 10		<0.5 <0.1	<0.5 0.2	
BTEX	μg/l			N.1	0.2	
Benzène	μg/l	I	-	<0.2	<0.2	
Toluène Ethylbenzène	μg/l	-	-	<0.5	<0.5	
m,p-Xylène	μg/l μg/l	-	-	<0.5	<0.5	
o-Xylène	μg/l	-	-	<0.50	<0.50	
Somme Xylènes	μg/l	-	-	n.d.	n.d.	
Hydocarbures Volatils Fraction aliphatique >C6-C8	μg/l	_	_	<2.0	<2.0	
Fraction aromatique > C6-C8	μg/I	-	-	<2.0	<2.0	
Fraction aliphatique >C8-C10	μg/l	-	-	<2.0	<2.0	
Fraction aromatique >C8-C10 Fraction >C6-C8	μg/l	-	-	<2.0 <4.0	<2.0 <4.0	
Fraction >C8-C10	μg/l μg/l	-	-	<4.0	<4.0	
Fraction C5-C10	μg/l	-	-	< 0	< 0	
Hydocarbures Totaux	//		1000	150	450	
Hydrocarbures totaux C10-C40 Fraction C10-C12	μg/l μg/l	-	1000	<50 <10	<50 <10	
Fraction CI2-CI6	μg/l	-	-	<10	<10	
Fraction C16-C20	µg/l	-	-	<5.0	<5.0	
Fraction C20-C24 Fraction C24-C28	μg/l	-	-	<5.0 <5.0	<5.0 <5.0	
Fraction C28-C32	μg/l μg/l	-	-	<5.0	<5.0	
Fraction C32-C36	μg/l	-	-	<5.0	<5.0	
Fraction C36-C40	μg/l	-	-	5.3	<5.0	
Hydrocarbures Aromatiques Polycycliq Naphtalène	ues (HAP) μg/l	-	-	<0.02	<0.02	
Acénaphtylène	μg/l	-	-	<0.050	<0.050	
Acénaphtène	μg/l	-	-	<0.01	<0.01	
Fluorène Phénanthrène	μg/l μg/l	-	-	<0.010	<0.010	
Anthracène	μg/l	-	-	<0.010	<0.010	
Pyrène	μg/l	-	-	0.011	<0.010	
Benzo(a)anthracène Chrysène	μg/l μg/l	-	-	<0.019	0.012 <0.010	
Fluoranthène	μg/I	-		<0.010	<0.010	
Benzo(b)fluoranthène	µg/l			<0.010	<0.010	
Benzo(k)fluoranthène ndéno(1,2,3-cd)pyrène	µg/l	0.1	I	<0.010	<0.01	
Benzo(g,h,i)pérylène	μg/l μg/l			<0.010	<0.010	
Benzo(a)pyrène	μg/l	0.01		<0.010	<0.010	
Dibenzo(ah)anthracène Somme HAP	μg/l	-	-	<0.010	<0.010	
Somme HAP (VROM)	μg/l μg/l	-	-	0.011	n.d. n.d.	
Somme HAP (16 EPA)	μg/l	-	-	0.03	0.012	
PCB (20)				-0.010	-0.010	
PCB (28)	μg/l μg/l	-	-	<0.010	<0.010	
PCB (101)	μg/l	-	-	<0.010	<0.010	
PCB (118)	μg/l	-	-	<0.010	<0.010	
PCB (138)	μg/l	-	-	<0.010	<0.010	
PCB (180)	µg/l µg/l	-	-	<0.010	<0.010	
Somme PCB (STI) (ASE)	μg/l	-	-	n.d.	n.d.	
Somme PCB (7)	μg/l	-	-	n.d.	n.d.	

F.8. Interprétation des résultats sur les eaux souterraines

Aucun dépassement des valeurs de référence retenues n'a été constaté sur l'ensemble des composés analysés.

Les seuls composés organiques quantifiés sont le tétrachloroéthylène, des hydrocarbures C_{36} - C_{40} et des HAP présents à l'état de traces.

Aucune anomalie ou impact n'est donc observé au droit des eaux souterraines en partie sud du site ; les fortes teneurs en métaux dans les sols n'ont donc pas dégradé la qualité de la nappe.

G. INVESTIGATIONS SUR LES GAZ DU **SOL (A230)**

G.I. Rappel du contexte et objectifs des prélèvements sur les gaz du sol

Au vu des impacts en mercure observé lors du diagnostic initial et de l'usage futur du site (espaces verts publics, avec potentiel aménagement de jeux pour enfants) des investigations des gaz des sols ont été menées.

Conformément aux guides méthodologiques en vigueur, FONDASOL Environnement a privilégié la pose d'ouvrages permanents de type piézairs permettant la réalisation de plusieurs campagnes de prélèvements.

G.2. Stratégie d'investigations sur les gaz du sol

L'objectif est de vérifier la présence ou l'absence d'impact dans les gaz du sol ainsi que définir les éléments marqueurs de la pollution des gaz du sol se retrouvant dans l'air ambiant.

Les investigations réalisées sur le secteur d'étude ont consisté en la réalisation de 6 piézairs à la tarière mécanique. Les sols excédentaires ont été stockés sur site, en concertation avec l'exploitant.

Ces investigations ont été implantées lors de la campagne de réalisation des sondages de sols et des piézomètres, sur la base des résultats des mesures de terrain et des impacts mis en évidence lors de la première étude.

Notons ainsi qu'aucun piézair n'a été mis en place au droit du sondage S22 renfermant la teneur maximale, toute campagne confondue, en mercure: 3200 mg/kg entre 0,2 et 0,6 m, ni en S24 renfermant la teneur en naphtalène la plus élevée.

Profondeur Enieu atteinte Piézair Concentrations mesurées dans les Source potentielle Aménagement de pollution sols à caractériser / mesures PID projeté SI (0-0,5): Hg: 1,99 mg/kg MS Pal l m Chambres à plomb S3 (0-0,4): Hg: 243 mg/kg Parking et Pa3 et matériaux de l m MS (teneur maximale) voiries démolition Pa4 S4 (0-0,4): Hg: 45,9 mg/kg MS Ιm S6 (0-1): Hg: 15,6 mg/kg MS, HV Pa6 l m C_{12} - C_{16} : 5,1 mg/kg MS, Dépôts de matériaux S7 (0-1): HV C₈-C₁₀: inconnus / Ancien Espaces verts 0,26 mg/kg MS (teneur

S9 (0,3-0,8): Hg: I,I mg/kg MS

maximale)

Tableau 16 : Stratégie d'investigations sur les gaz du sol

bassin d'eau

Pa7

Pa9

l m

l m

Les ouvrages ont été réalisés comme décrit dans le Tableau 17.

Tableau 17: Description des piézairs

Ouvrage	Nature du tubage	Diamètre en mm (int/ext)	Profondeur de la crépine (en m)	Profondeur de l'ouvrage (en m)	Protection
PAI	PEHD	24/32	0,5-1,0	I	Bouche à clé raz de sol
PA3	PEHD	24/32	0,5-1,0	I	Bouche à clé raz de sol
PA4	PEHD	24/32	0,5-1,0	1	Bouche à clé raz de sol
PA6	PEHD	24/32	0,5-1,0	I	Bouche à clé raz de sol
PA7	PEHD	24/32	0,5-1,0	I	Bouche à clé raz de sol
PA9	PEHD	24/32	0,5-1,0	I	Bouche à clé raz de sol

Notons que les concentrations maximales ont été mises en évidence majoritairement dans les horizons superficiels, entre 0 et 50 cm. En l'absence de couverture, il n'a pas été possible de réaliser des piézairs crépinés au-dessus de 50 cm. Par ailleurs, compte tenu des teneurs mises en évidence, les sols de surface ne pourront vraisemblablement pas rester en place. Ces piézairs permettront ainsi de quantifier le dégazage du mercure, une fois la couche superficielle gérée.

La Figure 8 précise la localisation des piézairs.

L'ensemble de ces données de terrain a été consigné et est présenté en Annexe II.

Figure 8 : Localisation des piézairs et des sources potentielles de pollution

G.3. Conditions météorologiques

Les conditions météorologiques (pression atmosphérique, pluviométrie, taux d'humidité, température de l'air, ...) peuvent engendrer des conditions majorantes ou minorantes pour les émissions de composés gazeux depuis les sols et les eaux souterraines vers l'air intérieur.

Les données météorologiques issues de la station Infoclimat d'Istres – Le Tubé pour les 3 jours précédant la campagne et les relevés météorologiques lors des prélèvements et du jour suivant, sont précisées dans le Tableau 18 et sur les fiches de prélèvements des gaz du sol en Annexe 12.

Date	Température moyenne (°C)	Vitesse moyenne du vent (km/h)	Pluviométrie (mm)	Hygrométrie moyenne (%)	Pression maximale (hPa)	Pression minimale (hPa)	Température des gaz du sol (°C)
J-3	13,0	21	0	56	1020,2	1017,8	
J-2	14,6	14	0	58	1017,9	1013,7	
J-I	13,9	П	0	60	1018,1	1015,3	
J	16,7	12	0	55	1019,7	1016,4	18
J+I	19,5	16	0	51	1019,7	1016,6	

Tableau 18 : Conditions météorologiques du 11/04/2022 au 15/04/2022

Ces conditions météorologiques sont moyennement favorables au dégazage dans les sols conformément au guide pratique pour la caractérisation des gaz du sol.

Compte tenu des conditions défavorables au dégazage des sols observées lors de cette campagne, FONDASOL Environnement recommande de réaliser une 2ème campagne de prélèvements des gaz du sol conformément aux préconisations du guide FLUXOBAT.

G.4. Programme analytique sur les gaz du sol

Le dispositif utilisé pour la campagne de prélèvement des gaz du sol est présenté dans la figure ci-dessous.

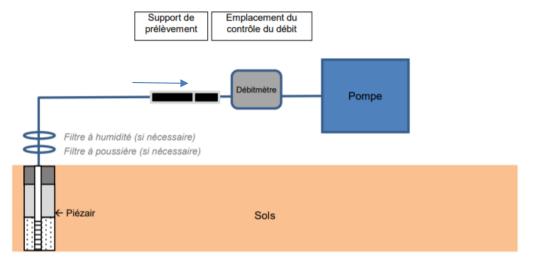


Figure 9 : Dispositif de prélèvement des gaz du sol (extrait du rapport BRGM RP-65870-FR et INERIS DCR-16-156181-01401A, 2016)

La colonne d'air a été purgée d'au moins 5 fois le volume de l'ouvrage.

Les prélèvements ont été effectués sur les supports et aux débits décrits dans le tableau suivant :

Type de support	Charbon actif	Carulite		
Composés recherchés	BTEX, naphtalène, HC C ₅ -C ₁₆ par méthode TPH, COHV	Mercure		
Durée de prélèvement	80 min	135		
Débit	0,5 L/min	I L/min		

Le programme analytique a été conduit conformément au programme d'investigations complémentaires précédemment défini sur la base des résultats des premières campagnes d'investigations des sols. Ce programme est présenté dans le Tableau 19.

Tableau 19 : Synthèse du programme analytique sur les gaz du sol

Échantillons		Paramè	etres recherchés	
Echandilons	BTEXN	COHV	HC C ₅ -C ₁₆ par TPH	Mercure
PAI	×	×	X	×
PA3	×	X	X	×
PA4	×	×	X	×
PA6	×	×	X	×
PA7	×	X	X	×
PA9	×	×	X	×
Blanc de transport	X	X	×	Х
Blanc de terrain	Х	Х	X	×

Les abréviations des composés et packs analytiques proposés sont décrites en Annexe 2.

Ce programme inclut un échantillon de blanc de transport pour le charbon actif et la carulite (support de prélèvement n'ayant pas servi pour le prélèvement mais appartenant au même lot de fabrication et ayant été transporté vers le laboratoire avec les autres supports). Ce blanc a fait l'objet du même programme d'analyses que les autres échantillons.

Ce programme inclut un échantillon de blanc de terrain pour le charbon actif et la carulite (support de prélèvement n'ayant pas servi pour le prélèvement mais appartenant au même lot de fabrication et ayant été ouvert sur site puis refermé en même temps que les autres supports puis transporté vers le laboratoire). Ce blanc a fait l'objet du même programme d'analyses que les autres échantillons.

Les échantillons ont été analysés par le laboratoire AGROLAB, accrédité par le RvA – Raad voor Accreditatie – conformément aux critères des laboratoires d'analyses ISO/IEC 17025 :2017, accréditation reconnue par le COFRAC.

Les propriétés physico-chimiques des composés recherchés sont présentées en Annexe 4 et les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé en Annexe 5.

G.5. Valeurs de référence pour les gaz du sol

Il n'existe pas de valeur de référence ou de gestion pour les gaz du sol mais les résultats seront comparés aux valeurs de référence définies pour l'air ambiant : il s'agit de valeurs repères et non de valeurs de gestion. Dans l'air ambiant, ces valeurs sont issues de la gestion mise en place au niveau national dans la démarche de diagnostic des sols dans les lieux accueillant les enfants et les adolescents. Elles sont basées sur des critères sanitaires et présentant 3 seuils⁴:

- R1: valeurs de gestion qui sont par ordre de priorité, les valeurs réglementaires disponibles, les valeurs cibles ou repères du HCSP⁵, les valeurs guides de qualité d'air intérieur (VGAI) de l'ANSES⁶ et, à défaut, des VTR⁷;
- R2 : dans la plupart des cas équivalentes aux valeurs réglementaires ou aux seuils d'action définis par le HCSP ;
- R3 : des VTR aigües disponibles pour les expositions sur une courte période.

Les valeurs de comparaison retenues sont rappelées dans les premières colonnes des tableaux des résultats d'analyses.

G.6. Présentation des résultats sur les gaz du sol

Les bordereaux d'analyses sur les gaz de sol sont présentés en Annexe 13. Le Tableau 20 présente la synthèse des résultats.

Le tube support spécifique utilisé pour le prélèvement des substances présentes en phase vapeur dans les gaz du sol / l'air sous dalle comporte une zone de mesure et une zone de contrôle, cette dernière permettant de contrôler la non-saturation de la zone de mesure et ainsi de valider la représentativité de l'échantillonnage. Les analyses ont porté sur la zone de mesure et la zone de contrôle. En l'absence de quantification de composés sur la zone de contrôle, ne sont présentés dans le tableau suivant que les résultats obtenus sur la zone de mesure.

Concernant le mercure, ce composé a été identifié à la fois dans les blancs de terrain et de transport. Ces constats indiquent une contamination probable des tubes de carulite par une source autre que les prélèvements de gaz du sol. Le laboratoire d'analyse confirme que le mercure entre dans la fabrication des supports de prélèvement et conseille de retrancher le blanc de transport / de terrain aux valeurs des résultats de mesure.

Les teneurs en mercure présentées dans le Tableau 20 correspondent à la soustraction des teneurs mesurées dans les tubes de gaz du sol et celles du blanc de terrain (0,008 µg/tube)

Les résultats d'analyses du blanc de terrain et du blanc de transport sont inférieurs à la limite de quantification de tous les autres composés. Ce résultat garantit l'absence d'interférence avec l'air extérieur lors de nos prélèvements.

Compte tenu des variations de débit de certaines pompes de prélèvement, le temps de prélèvement ont été adaptés.

On note plus particulièrement un écart entre le débit au début et à la fin de prélèvement est compris entre 5 et 10% pour le prélèvement sur la carulite en PA4, le débit le plus faible a donc été pris en compte.

⁴ conformément au rapport de « Mise à jour des valeurs-repères R1, R2 et R3 dans le cadre de la méthodologie de gestion des sites et sols pollués » - rapport 20487-2706501-v1.0 du 21/10/2021

⁵ HCSP : Haut Conseil de la Santé Publique

⁶ ANSES : Agence Nationale Sécurité Sanitaire Alimentaire Nationale

⁷ VTR : Valeurs Toxicologiques de Référence

Tableau 20 : Résultats analytiques dans les gaz du sol

Paramètre	Unité	RI	R2	R3						
Référence		Inéris	valeurs au 21/10	0/2021	PAI	PA3	PA4	PA6	PA7	PA9
Métaux lourds										
Mercure élémentaire	μg/m³	0.03	0.2	-	0.015	0.029	0.007	0.036	0.015	0.015
Composés Organo Halogénés Vola	tils (COHV)									
I,I-Dichloroéthène	μg/m³	-	-	-	<2	<2	<3	<3	<2	<3
Chlorure de Vinyle	μg/m³	2.6	26	I 300	<2	<2	<3	<3	<2	<3
Dichlorométhane	μg/m³	10	100	2 100	<6	<6	<6	<6	<6	<6
Trans-1,2-Dichloroéthylène	μg/m³	-	-	-	<5	<5	<5	<5	<5	<5
I,I-Dichloroéthane	μg/m³	-	-	-	<5	<5	<5	<5	<5	<5
cis-1,2-Dichloroéthène	μg/m³	60	600	-	<5	<5	<5	<5	<5	<5
Trichlorométhane (chloroforme)	μg/m³	63	150	150	<5	<5	<5	<5	<5	<5
I,2-Dichloroéthane	μg/m ³	-	-	-	<5	<5	<5	<5	<5	<5
I,I,I-Trichloroéthane	μg/m ³	1 000	5 000	5 000	<5	<5	<5	<5	<5	<5
Tétrachlorométhane	μg/m ³	110	190	1900	<5	<5	<5	<5	<5	<5
Trichloroéthylène	μg/m ³	10	50	3 200	<	<	<	<	<	<
I,I,2-Trichloroéthane	μg/m ³	-	-	-	<5	<5	<5	<5	<5	<5
Tétrachloroéthylène	μg/m ³	250	I 250	I 380	<5	<5	<5	<5	<5	<5
BTEX	. 0									
Benzène	μg/m³	2	10	30	<	<	3	<	2	<
Toluène	μg/m³	20 000	21 000	21 000	<2	4	7	4	5	3
Ethylbenzène	μg/m³	I 500	15 000	22 000	<2	<2	<3	<3	<2	<3
m,p-Xylène	μg/m³	-	-	-	<2	<2	4	<3	5	<3
o-Xylène	μg/m ³	-	-	-	<2	<2	4	<3	5	<3
Xylènes	μg/m³	100	1 000	8 800	<4	<4	8	<6	10	<6
Hydrocarbures aliphatiques										
Hydrocarbures aliphatiques C5-C6	μg/m³	18 000	180 000	-	<50	<49	<5	<50	<49	<5
Hydrocarbures aliphatiques C6-C8	μg/m³	18 000	180 000	-	<50	<49	<51	<50	<49	<5
Hydrocarbures aliphatiques C8-C10	μg/m³	1 000	10 000	-	<50	54	76	78	100	<5
Hydrocarbures aliphatiques C10-C12	μg/m³	1 000	10 000	-	<50	<49	<5	<50	<49	97
Hydrocarbures aliphatiques C12-C16	μg/m³	1 000	10 000	-	<50	<49	<5	<50	<49	<5
Hydrocarbures aromatiques										
Hydrocarbures aromatiques C6-C7	μg/m³	-	-	-	<	<	3	<	2	<
Hydrocarbures aromatiques C7-C8	μg/m³	-	-	-	<2	4	7	4	5	3
Hydrocarbures aromatiques C8-C10	μg/m³	200	2 000	-	<50	<49	<5	<50	<49	<5
Hydrocarbures aromatiques C10-C12	μg/m³	200	2 000	-	<50	<49	<5	<50	<49	<51
Hydrocarbures aromatiques CI2-CI6	μg/m³	200	2 000	-	<50	<49	<5	<50	<49	<51
Hydrocarbures Aromatiques Polyc	ycliques (HA	P)								
Naphtalène	µg/m³	10	50	-	<2	<2	<3	<3	<2	<3

G.7. Interprétation des résultats sur les gaz du sol

Les analyses effectuées sur les gaz du sol ont mis en évidence l'absence de dépassement des valeurs du critère R1 sur l'ensemble des composés recherchés à l'exception du mercure au droit du PA6 (quantifié à $0,036~\mu g/m^3$) du benzène au droit de l'échantillon PA4 (quantifié à $3~\mu g/m^3$).

Cette valeur reste cependant inférieure à la valeur de percentile 95 donnée par l'OQAI (2006) de 7,2 µg/m³ en benzène. Cela signifie que le que la qualité de l'air pour ce polluant est comparable à celle mesurée dans 90 % des logements français par ce même organisme.

Rappelons enfin que les bornes RI sont définies pour des teneurs dans l'air ambiant et non pour les gaz du sol.

Un facteur d'atténuation de 0,05 (CAI/CGdS) a donc été retenu entre les concentrations mesurées dans les gaz du sol et les concentrations dans l'air intérieur. Cette valeur est issue de l'analyse du retour d'expérience réalisé par l'agence de l'environnement des États-Unis (US-EPA) sur la base de mesures réalisées (il s'agit de la valeur appliquée par l'État

de Californie). Il est cohérent avec l'analyse statistique des mesures réalisées en France sur les établissements sensibles donnant un percentile 95 de 0,0378 .

Dans ce cadre, cette teneur en benzène estimée dans l'air ambiant serait inférieure à la borne R1.

-

⁸ Derycke V., Coftier A., Zornig C. Leprond H., Scamps M., Gilbert D. Environmental assessments on schools located on or near former industrial facilities: feedback on attenuation factors for the prediction of indoor air quality. Juin 2018. Science of total environment (vol 626 pp 754-761)

H. INVESTIGATIONS SUR L'AIR AMBIANT (A240)

H.I. Rappel du contexte et objectifs des prélèvements sur l'air ambiant

Afin de mettre en évidence la contribution des gaz du sol à la qualité de l'air ambiant, FONDASOL Environnement a réalisé des prélèvements d'air ambiant suivant une méthode par prélèvements passifs sur Radiello.

H.2. Stratégie d'investigations sur l'air ambiant – Méthode par prélèvements passifs

Les mesures d'air ambiant ont été réalisés sur supports passifs de type Radiello ® (badges SNK pour le mercure) : ils permettent d'évaluer l'exposition réelle des usagers des locaux, dans leurs conditions habituelles de fonctionnement. Elles sont faciles à mettre en place, n'induisent pas de nuisances pour les usagers et ne détériorent pas le bâti existant.

En revanche, les résultats des mesures peuvent être influencés par les émanations des vapeurs du bâtiment ou liées aux activités encore exercées et il n'est pas impossible de distinguer la part de vapeurs en provenance du milieu souterrain de la part provenant de l'activité dans les locaux et d'autres sources.

L'échantillonnage passif se fait par diffusion des polluants présents dans l'air sur un badge à travers une paroi diffusive spécifique aux substances à rechercher. Les capteurs seront laissés en place une semaine.

Le tube contient un absorbant adapté pour le piégeage du polluant que l'on veut mesurer. Le prélèvement de l'échantillon s'effectue par une méthode naturelle. Celle-ci repose sur le principe de la diffusion passive des molécules sur le milieu absorbant. Quand l'échantillonneur est exposé, un gradient de concentration s'établit entre l'air à l'extérieur du tube et l'air en contact avec la surface de l'adsorbant. Ce différentiel de concentration va entraîner une diffusion du composé à travers la membrane poreuse, sans mouvement actif de l'air. L'échantillonneur passif est exposé à l'air pour une durée définie, en général de I semaine à 15 jours.

Les prélèvements ont été réalisés au droit des zones sensibles (salle d'attente et bureau, pièces de vie, ...) en couplage avec les zones ayant fait l'objet de prélèvements de gaz de sols. L'emplacement définitif des points de prélèvement a été validé par l'enquête préliminaire dont le questionnaire est présenté en Annexe I4.

Les secteurs de prélèvements sont présentés dans le reportage photographique en Annexe I5 et leur localisation précisée en Figure I0.

H.3. Stratégie d'investigations sur l'air ambiant – méthode par prélèvements actifs

Compte tenu des teneurs mises en évidence en composés volatils (mercure et HV) dans les sols, de l'usage actuel du site et du projet d'aménagement (parc public avec espaces verts, de promenades et potentielle aire de jeu pour enfants), il a été recommandé la réalisation d'investigations sur l'air ambiant au droit du site.

Les prélèvements ont été réalisés au droit des zones sensibles (près de l'actuelle aire de jeu et reste de la place) en couplage avec les zones ayant fait l'objet de prélèvements de gaz de sols. L'emplacement définitif des points de prélèvement a été validé par l'enquête préliminaire dont le questionnaire est présenté en Annexe 14.

Les secteurs de prélèvements sont présentés dans le reportage photographique en Annexe I5 et leur localisation précisée en Figure I0.

Les prélèvements ont été réalisés selon la stratégie définie à l'issue des résultats des premières investigations sur les sols. Cette stratégie est rappelée dans le Tableau 21.

Tableau 21 : Stratégie d'investigations sur l'air ambiant

		Enjo	eu				
	Localisation	Source de pollution	Aménagement existant	Hauteur des prélèvements	Support de prélèvements	Date et heure de pose	Date et heure de dépose
		Chambre de plomb et dépôts de matériaux			Radiello ®	13/06 – 8h45	20/06 - IIh28
	de démolition Associé à PA3 et à la teneur maximale dans les sols en mercure		I m pour cible = enfants	Badge SKC	13/06 – 8h55	20/06 – 11h29	
		Ancien bassin d'eau et dépôts de matériaux		1,5 m pour cible = adultes	Radiello ®	13/06 - 8h38	20/06 - IIh24
	AA2	inconnus Associé à PA7 et à la teneur maximale dans les sols en HV	Parc public		Badge SKC	13/06 – 8h35	20/06 – IIh22
	AA3 - Témoin	Dépôts de matériaux		I,5 m pour	Radiello ®	13/06 – 9h00	20/06 - I I h 32
		inconnus et ancien bâtiment industriel		cible = adultes	Badge SKC	13/06 – 9h05	20/06 - IIh33

L'ensemble de ces données de terrain a été consigné et présenté en Annexe 15.

Figure 10 : Localisation des prélèvements d'air ambiant et des sources potentielles de pollution

H.4. Conditions météorologiques

Les données météorologiques issues de la station Météo France d'Istres – Le Tubé pour les 3 jours précédant la campagne et les relevés météorologiques lors des prélèvements (7 jours après la mise en place des supports de prélèvements), sont présentées dans le Tableau 22.

Tableau 22 : Conditions météorologiques sur la période du 10/06/2022 au 20/06/2022

Date	Température moyenne (°C)	Vitesse moyenne du vent (km/h)	Pluviométrie (mm)	Hygrométrie moyenne (%)	Pression maximale (hPa)	Pression minimale (hPa)
J-3	24,5	34	0	33	1018,0	1016,3
J-2	25,6	14	0	41	1020,4	1017,8
J-I	24,2	12	0	54	1020,7	1017,6
J	27,4	22	0	46	1018,6	1014,1
J+1	25,4	15	0	49	1017,3	1014,8
J+2	25,7	12	0	61	1019,5	1015,3
J+3	27,4	12	0	54	1018,2	1015,2
J+4	28,2	14	0	49	1019,1	1016,6
J+5	27,8	16	0	53	1019,2	1015,6
J+6	27,2	20	0	49	1015,3	1012,5
J+7	27,3	20	0	47	1013,9	1012,9

Ces conditions météorologiques sont moyennement favorables au dégazage de composés volatils dans les sols conformément au guide pratique pour la caractérisation des gaz du sol.

H.5. Programme analytique sur l'air ambiant

L'objectif est de vérifier la présence ou l'absence d'impact dans l'air ambiant imputable au gaz du sol ainsi que définir les éléments marqueurs de la pollution des milieux.

Le programme analytique est présenté dans le Tableau 23.

Les propriétés physico-chimiques des composés recherchés sont présentées en Annexe 4 et les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé en Annexe 5.

Tableau 23 : Synthèse du programme analytique sur l'air ambiant

Échantillons		Paramètres recherchés								
Echantinons	BTEXN	COHV	HC C ₅ -C ₁₆ par TPH	Mercure						
AAI	×	×	X	×						
AA2	×	×	X	×						
AA3 - Témoin	Х	Х	X	Х						

Les abréviations des composés / packs analytiques proposés sont décrites en Annexe 2.

L'ensemble de ces données de terrain a été consigné et est présenté en Annexe 15.

Les échantillons ont été analysés par le laboratoire AGROLAB, accrédité par le RvA – Raad voor Accreditatie – conformément aux critères des laboratoires d'analyses ISO/IEC 17025 :2017, accréditation reconnue par le COFRAC.

H.6. Valeurs de référence pour l'air ambiant

Conformément à la méthodologie nationale pour la gestion des sites et sols pollués, les résultats sont comparés entre eux mais également :

- aux valeurs de référence définies pour l'air ambiant : il s'agit de valeurs repères et non de valeurs de gestion. Dans l'air ambiant, ces valeurs sont issues de la gestion mise en place au niveau national dans la démarche de diagnostic des sols dans les lieux accueillant les enfants et les adolescents. Elles sont basées sur des critères sanitaires et présentent 3 seuils⁹ :
 - RI: valeurs de gestion qui sont par ordre de priorité, les valeurs réglementaires disponibles, les valeurs cibles ou repères du HCSP10, les valeurs guides de qualité d'air intérieur (VGAI) de l'ANSES¹¹ et, à défaut, des VTR¹².
 - R2 : dans la plupart des cas équivalentes aux valeurs réglementaires ou aux seuils d'action définis par le HCSP,
 - R3 : des VTR aigües disponibles pour les expositions sur une courte période.

Les valeurs de comparaison retenues sont rappelées dans les premières colonnes des tableaux des résultats d'analyses.

⁹ conformément au rapport de « Mise à jour des valeurs-repères R1, R2 et R3 dans le cadre de la méthodologie de gestion des sites et sols pollués » - rapport 20487-2706501-v1.0 du 21/10/2021 ¹⁰ HCSP : Haut Conseil de la Santé Publique

¹¹ ANSES : Agence Nationale Sécurité Sanitaire Alimentaire Nationale

¹² VTR : Valeurs <u>Toxicologiques de Référence</u>

H.7. Présentation des résultats sur l'air ambiant

Les bordereaux d'analyses sur l'air ambiant sont présentés en Annexe 15. Le Tableau 24 présente la synthèse des résultats et la comparaison aux valeurs de référence précitées.

Tableau 24 : Résultats analytiques dans l'air ambiant

Paramètre	Unité	RI	R2	R3			
Référence		Inéris,	, valeurs au 21/10	0/2021	AAI	AA2	AA3 (témoin)
Métaux lourds							
Mercure élémentaire	μg/m³	0.03	0.2	-	<0.024	< 0.024	<0.024
Composés Organo Halogénés Vola							
I,I-Dichloroéthène	μg/m³	-	-	-	<0.07	<0.06	< 0.07
Chlorure de Vinyle	μg/m³	2.6	26	I 300	< 0.03	< 0.03	< 0.03
Dichlorométhane	μg/m³	10	100	2 100	<0.02	< 0.02	< 0.02
Trans-1,2-Dichloroéthylène	μg/m³	-	-	-	<0.07	<0.06	< 0.07
I,I-Dichloroéthane	μg/m³	-	-	-	<0.07	<0.06	< 0.07
cis-1,2-Dichloroéthène	μg/m³	60	600	-	< 0.07	< 0.06	< 0.07
Trichlorométhane (chloroforme)	μg/m³	63	150	150	<0.02	0.03	0.03
1,2-Dichloroéthane	μg/m³	-	-	-	0.19	0.27	0.25
I, I, I-Trichloroéthane	μg/m³	1 000	5 000	5 000	< 0.03	< 0.03	< 0.03
Tétrachlorométhane	μg/m³	110	190	1900	0.12	0.13	0.19
Trichloroéthylène	μg/m³	10	50	3 200	<0.02	< 0.02	< 0.02
I,I,2-Trichloroéthane	μg/m³	-	-	-	< 0.03	< 0.03	< 0.03
Tétrachloroéthylène	μg/m³	250	I 250	I 380	0.02	0.04	0.05
I,2-Dichloropropane	μg/m³	-	-	-	< 0.02	< 0.02	< 0.02
Trans-1,3-Dichloropropène	μg/m³	-	-	-	<0.02	< 0.02	< 0.02
Cis-1,3-Dichloropropène	μg/m³	-	-	-	<0.02	< 0.02	< 0.02
ВТЕХ							
Benzène	μg/m³	2	10	30	0.52	0.65	0.77
Toluène	μg/m³	20 000	21 000	21 000	0.66	0.99	1.3
Ethylbenzène	μg/m³	1 500	15 000	22 000	3.3	5.1	6
m,p-Xylène	μg/m³		-	-	0.58	0.84	1.2
o-Xylène	μg/m³	-	-	-	0.44	0.53	0.67
Xylènes	μg/m³	100	1 000	8 800	1.02	1.37	1.87
Hydrocarbures aliphatiques							
Hydrocarbures aliphatiques C5-C6	μg/m³	18 000	180 000	-	1.1	1.8	2.3
Hydrocarbures aliphatiques C6-C8	μg/m³	18 000	180 000	-	1.32	2.22	2.77
Hydrocarbures aliphatiques C8-C10	μg/m³	1 000	10 000	-	13.4	22.5	25.3
Hydrocarbures aliphatiques C10-C12	μg/m³	1 000	10 000	-	36.6	63.4	70.8
Hydrocarbures aliphatiques C12-C16	μg/m³	1 000	10 000	-	3	7.1	8.4
Hydrocarbures aromatiques							
Hydrocarbures aromatiques C6-C7	μg/m³	-	-	-	0.52	0.65	0.77
Hydrocarbures aromatiques C7-C8	μg/m³	-	-	-	0.66	0.99	1.3
Hydrocarbures aromatiques C8-C10	μg/m³	200	2 000	-	22.9	34.4	41
Hydrocarbures aromatiques C10-C12	μg/m³	200	2 000	-	0.93	1.3	1.5
Hydrocarbures aromatiques C12-C16	μg/m³	200	2 000	-	<0.02	<0.02	<0.02
Hydrocarbures Aromatiques Polyo	ycliques (HA	AP)					
Naphtalène	μg/m³	10	50	-	0.2	0.27	0.33

H.8. Interprétation des résultats sur l'air ambiant

Les analyses effectuées sur l'air ambiant ont mis en évidence l'absence de dépassement des valeurs de la borne R1, la qualité de l'air extérieur au droit du site n'est donc pas dégradée.

I. SYNTHESE DES RESULTATS

I.I. Synthèse cartographique

Compte tenu de l'absence d'impacts observés au droit des milieux eaux souterraines, gaz des sols et air ambiant, les anomalies et impacts observés au droit du site reste circonscrit au milieu sol. Ainsi la synthèse cartographique des anomalies se résume à celle présentée en Figure 5.

I.2. Bilan de l'état des milieux

Les analyses de sol, d'eaux souterraines, des gaz de sols et de l'air ambiant mettent en évidence :

Dans les sols :

- la présence d'impacts en métaux sur les sols superficiels et notamment en mercure, plomb et zinc dus à l'activité historique du site (utilisation de chambre à plomb),
- la présence d'anomalies en HAP,
- la présence d'HC C₈-C₄₀ et de traces en PCB,

Dans les eaux souterraines, des traces de zinc et de tétrachloroéthylène.

Et dans les gaz du sol, impacts en mercure et benzène, composés non quantifiés dans les eaux souterraines.

La répartition de ces composés est résumée dans le Tableau 25.

Tableau 25 : Synthèse des teneurs dans les différents milieux

				Famille	de poll	uant				
Milieux investigués	Mercure	Autres métaux	СОНУ	втех	HC C₅- C₁6	HCT C ₁₆ -C ₄₀	Naphtalène	Autres HAP	PCB	Seuils de l'arrêté du 12/12/2014
Sols (0,0-0,6 m)	•	•	<l.q.< th=""><th><l.q.< th=""><th>•</th><th>•</th><th>•</th><th>•</th><th>•</th><th>Anomalies en HAP sur brut métaux lixiviables, fraction soluble, sulfates et fluorures</th></l.q.<></th></l.q.<>	<l.q.< th=""><th>•</th><th>•</th><th>•</th><th>•</th><th>•</th><th>Anomalies en HAP sur brut métaux lixiviables, fraction soluble, sulfates et fluorures</th></l.q.<>	•	•	•	•	•	Anomalies en HAP sur brut métaux lixiviables, fraction soluble, sulfates et fluorures
Sols (0,6-2,0 m)	•	•	<l.q.< th=""><th><l.q.< th=""><th><l.q.< th=""><th><l.q.< th=""><th><l.q.< th=""><th>•</th><th><l.q.< th=""><th>n.a.</th></l.q.<></th></l.q.<></th></l.q.<></th></l.q.<></th></l.q.<></th></l.q.<>	<l.q.< th=""><th><l.q.< th=""><th><l.q.< th=""><th><l.q.< th=""><th>•</th><th><l.q.< th=""><th>n.a.</th></l.q.<></th></l.q.<></th></l.q.<></th></l.q.<></th></l.q.<>	<l.q.< th=""><th><l.q.< th=""><th><l.q.< th=""><th>•</th><th><l.q.< th=""><th>n.a.</th></l.q.<></th></l.q.<></th></l.q.<></th></l.q.<>	<l.q.< th=""><th><l.q.< th=""><th>•</th><th><l.q.< th=""><th>n.a.</th></l.q.<></th></l.q.<></th></l.q.<>	<l.q.< th=""><th>•</th><th><l.q.< th=""><th>n.a.</th></l.q.<></th></l.q.<>	•	<l.q.< th=""><th>n.a.</th></l.q.<>	n.a.
Eaux souterraines	<l.q.< th=""><th>•</th><th>•</th><th><l.q.< th=""><th><l.q.< th=""><th>•</th><th><i,q.< th=""><th>•</th><th><l.q.< th=""><th>n.a.</th></l.q.<></th></i,q.<></th></l.q.<></th></l.q.<></th></l.q.<>	•	•	<l.q.< th=""><th><l.q.< th=""><th>•</th><th><i,q.< th=""><th>•</th><th><l.q.< th=""><th>n.a.</th></l.q.<></th></i,q.<></th></l.q.<></th></l.q.<>	<l.q.< th=""><th>•</th><th><i,q.< th=""><th>•</th><th><l.q.< th=""><th>n.a.</th></l.q.<></th></i,q.<></th></l.q.<>	•	<i,q.< th=""><th>•</th><th><l.q.< th=""><th>n.a.</th></l.q.<></th></i,q.<>	•	<l.q.< th=""><th>n.a.</th></l.q.<>	n.a.
Gaz du sol	•	n.a.	<l.q.< th=""><th>• (benzène)</th><th colspan="2">•</th><th><l.q.< th=""><th>n.a.</th><th>n.a.</th><th>n.a.</th></l.q.<></th></l.q.<>	• (benzène)	•		<l.q.< th=""><th>n.a.</th><th>n.a.</th><th>n.a.</th></l.q.<>	n.a.	n.a.	n.a.
Air Ambiant	<l.q.< th=""><th>n.a.</th><th>•</th><th>•</th><th></th><th>•</th><th>•</th><th>n.a.</th><th>n.a.</th><th>n.a.</th></l.q.<>	n.a.	•	•		•	•	n.a.	n.a.	n.a.

• : Teneur remarquable ou anormale

• : Quantification

I.q. : Non quantifié

n.a. : Non analysé En blanc : composés (potentiellement) volatils

Nota : on entend par teneur remarquable toute teneur sensiblement supérieure aux autres données sur le site (centile 80 et valeurs de comparaison).

I.3. Schéma conceptuel actualisé

I.3.1. Rappel sur le schéma conceptuel

Le schéma conceptuel a pour objectif de définir les enjeux sanitaires et environnementaux en illustrant les relations entre les sources potentielles de pollution, les voies de transfert, les milieux d'exposition susceptibles d'être atteints et les cibles concernées.

Véritable état des lieux du milieu ou du site considéré, le schéma conceptuel doit, d'une manière générale, permettre de préciser les relations entre :

- les sources de pollution ;
- les voies de transferts possibles, incluant les divers mécanismes de transport dans chaque milieu et leurs caractéristiques, ce qui détermine l'étendue des pollutions ;
- les récepteurs existants et/ou futurs à protéger : les populations riveraines, les usages des milieux et de l'environnement, les milieux d'exposition, et les ressources naturelles à protéger.

Si cette combinaison n'est pas réalisée, la pollution ne présente pas de risque dans la mesure où sa présence est identifiée et conservée dans les mémoires.

Les modes d'exposition peuvent être directs (ingestion des sols et de poussières, ingestion d'eau, inhalation de gaz provenant du sol ou de la nappe, ou de poussières) ou indirects (ingestion de produits de consommation susceptibles d'être eux-mêmes pollués, comme les produits du jardin).

1.3.2. Rappel du projet d'aménagement

Le projet d'aménagement consiste en l'aménagement :

- de voiries,
- d'espaces verts,
- potentiellement d'une aire de jeux pour enfants.

I.3.3. Sources de pollution

Les sources de pollution et les composés traceurs associés sont les suivants :

- des impacts en métaux issus de l'activité historique du site (chambre à plomb et dépôts de divers matériaux),
- la présence d'anomalie en HAP,
- la présence d'HC C₈-C₄₀ et de traces en PCB,
- la présence de dépassements des valeurs R1 en benzène et mercure au droit des gaz des sols.

I.3.4. Récepteurs à protéger

Les récepteurs existants et futurs à protéger sont les résidents alentours au site.

I.3.5. Voies de transfert

Au droit des zones non recouvertes (ensemble du site), les voies de transfert potentielles à considérer sont :

- la volatilisation et la remontée de vapeurs ;
- le contact direct;
- l'envol de poussières depuis les secteurs non revêtus ;
- la perméation vers les canalisations d'eau potable (conduite en terrain pollué) ;
- l'infiltration la percolation à travers la zone non saturée en eau du sol puis transfert par les eaux souterraines.

La voie de transfert potentielle hors site est la migration par les eaux souterraines.

Ainsi, les milieux d'exposition susceptibles d'être atteints sont les sols, les eaux souterraines et l'air ambiant.

I.3.6. Voies d'exposition

Au droit des zones non recouvertes (ensemble du site), les voies d'exposition potentielles pour les cibles retenues sont sur site :

- l'inhalation de polluant sous forme gazeuse (ZNS) ;
- l'inhalation de polluant adsorbé sur les poussières ;
- l'ingestion de sol et de poussières ;
- l'ingestion d'eau contaminée.

Les voies d'exposition potentielles sont hors site :

- l'inhalation de polluant sous forme gazeuse (via la nappe) ;
- l'ingestion d'eau contaminée (un puits privé/baignade) ;
- l'ingestion de végétaux auto-cultivés.

1.3.7. Représentation graphique du schéma conceptuel actualisé

Le schéma conceptuel actualisé du site mettant en corrélation les sources de pollution, les milieux de transfert et les cibles est présenté Figure II.

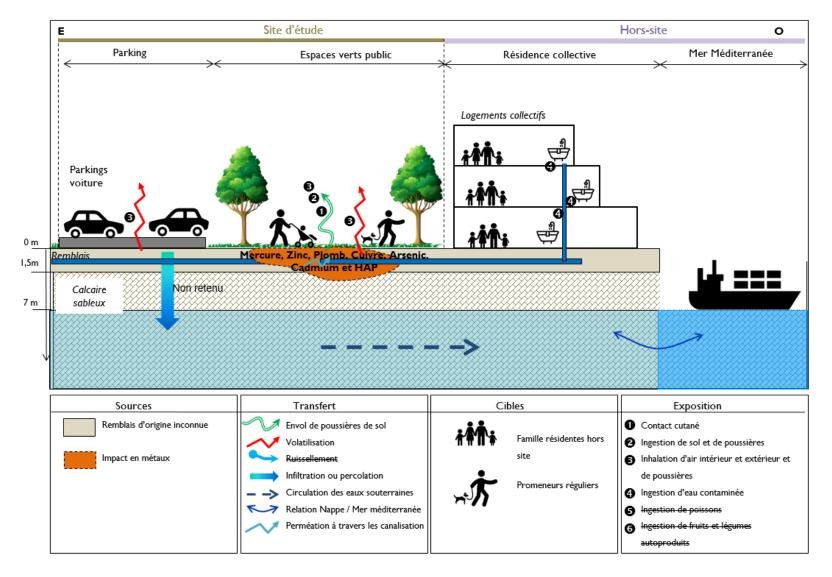


Figure II : Schéma conceptuel actualisé à l'issue du diagnostic

J. CONCLUSION ET RECOMMANDATIONS

J.1. Conclusions

Suite au premier diagnostic environnementale des sols réalisé dans le cadre de l'étude PR.69EN.21.0037, ayant montré que le site était historiquement occupé par une partie de l'usine Saint-Gobain (et notamment par des chambres à plomb) et de fortes anomalies en métaux dans les sols, un diagnostic complémentaire a été réalisé afin de délimiter les impacts dans les sols, et caractériser les milieux eaux souterraines, gaz des sols et air ambiant.

Les investigations complémentaires des sols ont confirmé les fortes anomalies en métaux (et notamment en mercure) dans les sols, mais restant délimités dans les sols superficiels (< 0,6 m de profondeur).

Les investigations sur les eaux souterraines n'ont pas mis en évidence d'anomalies ou d'impact. L'absence de transfert des sols superficiels vers les eaux souterraines est donc établie.

Les investigations sur les gaz des sols ont mis en évidence un dépassement de la valeur de la borne RI en benzène au droit de PA4 et mercure au droit de PA6. Compte tenu du facteur de dilution à prendre en compte, les composés présents ne posent pas de problématique sanitaire.

Les investigations au droit de l'air ambiant ont mis en évidence l'absence de dépassement des valeurs de la borne R1. Les impacts dans les sols n'ont donc pas dégradé la qualité de l'air extérieur.

J.2. Recommandations

J.2.1. Mesures de mise en sécurité

Compte tenu des quantifications importantes en métaux et notamment en mercure dans les sols superficiels et de l'usage actuel sensible du site (aire de jeu et aire de pique-nique), FONDASOL Environnement réitère sa recommandation quant à la mise en sécurité immédiate du site avec mise en place de clôtures afin d'empêcher les usages au droit du site.

J.2.2. Investigations complémentaires

Pour rappel, les concentrations en composés volatils dans les gaz du sol sont la résultante d'un grand nombre de facteurs tant environnementaux (nature, position et concentration dans les sources présentes en zone saturées et/ou en zones non saturées), que météorologiques (pression atmosphérique, précipitations, température, etc.) ou encore architecturaux (zone avec revêtement ou non, présence d'un bâtiment, tirage thermique, etc.).

C'est pourquoi, le guide méthodologique FLUXOBAT[I], recommande la réalisation de 2 campagnes de mesures de gaz du sol minimum sur deux périodes contrastées (été et hiver par exemple), voire 3 campagnes en cas de résultats divergents.

En l'absence d'information sur la présence potentielle de réseaux d'eaux, il est recommandé d'écarter tout risque de contamination de l'eau de robinet via la perméation des polluants vers les canalisations d'eau potable (conduite en terrain pollué) en réalisant comme préconisé lors de l'étude précédente :

- soit des recherches de réseaux enterrés afin de confirmer l'absence dans les sols de réseaux AEP,
- soit la réalisation de prélèvements d'eaux du robinet, afin d'évaluer la qualité de ce milieu

J.2.3. Gestion des impacts

Compte tenu de la présence dans les sols de fortes anomalies en métaux lourds dont mercure, FONDASOL Environnement recommande :

- la réalisation d'un plan de gestion afin de déterminer les moyens de gestion des zones de pollution concentrée ;
- la réalisation d'une analyse des risques résiduels (ARR) qui permettra de valider la compatibilité entre les teneurs résiduelles après la mise en œuvre des mesures de gestion et le projet.

Compte tenu des anomalies en métaux observées dans les sols superficiels du site, les terrains qui ne seront pas géré devront être recouverts de remblais sains en surface ou minéralisés (asphalte ou autre type de revêtement).

J.2.4. Gestion des futurs déblais

Au vu des résultats analytiques, les terres à évacuer dans le cadre de leur potentielle gestion devront être prises en charge en ISDI, ISDI+, ISDND ou Biocentre.

Dans le cadre de ces évacuations, il conviendra de réaliser un certificat d'acceptation préalable (CAP) auprès du centre repreneur des terres en amont des travaux (hors ISDI). Ceux-ci devront être réalisés selon la réglementation en vigueur.

J.2.5. Conservation de la mémoire du site

Le maintien d'anomalies résiduelles dans les sols du site nécessiterait de mettre en place des mesures de conservation de la mémoire du site (à travers les actes de vente, le livre foncier, le POS ou PLU de la commune...).

En cas de changement du projet d'aménagement, ces recommandations seraient à réévaluer.

K. LIMITES DE LA METHODE

Ce document doit être utilisé dans son entier.

Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des différents milieux investigués (sols, eaux souterraines, gaz du sol, ...). Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de notre société.

Par ailleurs, ce document a été établi pour un projet d'aménagement spécifique. Toute évolution de ce projet devra donner lieu à une actualisation du présent document. Tout changement d'usage ultérieur pourra conduire à l'établissement de nouvelles mesures de gestion.

Par ailleurs, ce rapport est réalisé sur les données disponibles à la date de réalisation : il rend compte de l'état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, accidents, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.

K.I. Etude documentaire

Cette étude est basée sur une approche documentaire. Les informations présentées ici sont soumises à l'exhaustivité et la fiabilité des documents disponibles et consultables : l'existence d'une information « non identifiée » ou « erronée » est possible. L'exhaustivité et la véracité des informations dont FONDASOL Environnement n'a pas la maîtrise ne peuvent être garanties.

K.2. Investigations

Les prélèvements ne peuvent pas offrir une vision continue de l'état des terrains du site. L'existence d'une anomalie d'extension limitée entre deux prélèvements et/ou à plus grande profondeur, qui aurait échappé à nos investigations, ne peut être exclue. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.

D'autre part, le diagnostic permet d'établir un état des lieux de la qualité environnementale des milieux à un instant donné. La survenue d'un incident ou d'une pollution ultérieure à la réalisation des investigations de terrain dans le cadre du diagnostic peut remettre en cause la validité des résultats et des conclusions du diagnostic.

L'échantillonnage du fait de son caractère ponctuel ne permet pas de représenter la totalité des impacts anthropiques (activités et installations humaines ciblées, lors des investigations, en fonction des données disponibles).

Enfin, seule la réalisation de fouilles à la pelle mécanique permet de s'assurer de la présence ou non de DIB dans les terres de remblais. Les déchets enfouis, s'ils ne peuvent être triés à l'avancement des terrassements, peuvent générer des refus en filière ISDI ou en comblement de carrière acceptant les terres sulfatées.

Le Ministère en charge de l'Environnement et le BRGM recommandent la réalisation de prélèvements et analyses de gaz du sol et/ou d'air ambiant afin de conclure sur la compatibilité sanitaire entre les milieux et le projet (au moins deux campagnes, à des périodes climatiques différentes, classiquement été et hiver). Ces mêmes organismes alertent sur le caractère sensible de ces analyses au regard de l'influence de nombreux paramètres au cours des prélèvements (parmi lesquels la température, la pression atmosphérique, la vitesse et l'orientation des vents sur le bâti, l'hygrométrie, le chauffage ou non du bâtiment). Ainsi, les concentrations observées dans les gaz du sol et l'air ambiant sont soumises à de forte variations temporelles (journalières et saisonnières) et spatiales.

K.3. Gestion d'une pollution identifiée

Cette mission de diagnostic ne permet pas de définir précisément les caractéristiques d'une éventuelle zone de pollution concentrée, ni d'en estimer les coûts de gestion ou les risques vis-à-vis de la santé humaine. Cela est le but d'un Plan de Gestion dont nous recommandons la réalisation.

Le Plan de Gestion s'attache à étudier en priorité les modalités de pollutions concentrées puis à maîtriser les impacts et risques associés et enfin à gérer les pollutions résiduelles et diffuses. Il s'agit d'une étude qui ne vaut pas cahier des charges pour la consultation des prestataires en charge de l'exécution des travaux.

ANNEXE I: CONDITIONS GENERALES DE SERVICE

I. Formation du Contrat

Toute commande par le co-contractant (« le Client »), qui a reçu un devis de la part de FONDASOL, ou l'une quelconque de ses filiales (ci-après le « Prestataire »), quelle qu'en soit la forme (par exemple bon de commande, lettre de commande, ordre d'exécution ou acceptation de devis, sans que cette liste ne soit exhaustive) et ses avenants éventuels. constituent l'acceptation totale et sans réserve des présentes conditions générales par ledit Client, que ce dernier ait contresigné les conditions générales ou non, ou qu'il ait émis des conditions contradictoires. Tout terme de la commande, quelle qu'en soit la forme, et de ses avenants éventuels, qui serait en contradiction avec les présentes conditions générales ou le devis, serait réputé de nul effet et inapplicable, sauf s'il a fait l'objet d'une acceptation écrite expresse non équivoque par le Prestataire. Cette acceptation ne peut pas résulter de l'exécution des Prestations prévues au devis et/ou à la commande, quelle qu'en soit la forme, et/ou avenant éventuel, ou de l'absence de réponse du Prestataire sur ledit terme. Les présentes conditions générales prévalent sur toutes autres conditions y compris contenues dans la commande (quelle que soit sa forme) du Client ou dans les accusés de réception des échanges de données informatisés, sur portail électronique, dans la gestion électronique des achats ou dans les courriers électroniques du Client. Aucune exception ou dérogation n'est applicable sauf si elle est émise par le Prestataire ou acceptée expressément, préalablement et de manière non équivoque par écrit par le Prestataire. À ce titre, toute condition de la commande ne peut être considérée comme acceptée qu'après accord écrit exprès et non-équivoque du Prestataire. Le contrat est constitué par le dernier devis émis par le Prestataire, les présentes conditions générales, la commande ou l'acceptation de devis ou lettre de commande du Client et, à titre accessoire et complémentaire les conditions de la commande expressément acceptées et spécifiquement indiquées par écrit par le Prestataire comme acceptées (le « Contrat »).

Le Contrat n'entrera en vigueur qu'à la réception par le Prestataire de l'acompte prévu au Contrat ou suivant les conditions particulières du devis, ou, le cas échéant, de l'accusé de réception de commande et/ou de réception de paiement émis par le Prestataire. Sauf disposition contraire des conditions particulières du devis, les délais d'exécution par le Prestataire de ses obligations au titre du Contrat commencent quinze (15) jours ouvrés après la date d'entrée en vigueur du Contrat.

Les prix sont établis aux conditions économiques en vigueur à la date d'établissement du devis. Préalablement au Contrat, les prix sont valables selon la durée mentionnée au devis et au maximum pendant deux (2) mois à compter de la date du devis. À l'entrée en vigueur et au maximum pendant deux (2) mois à compter de la date du devis. A l'entrée en vigueur du Contrat, les prix sont fermes et définitifs pour une durée de six (6) mois par application de l'indice "Sondages et Forages TP 04" pour les investigations in situ et en laboratoire, et par application de l'indice « SYNTEC » pour les prestations d'études, l'Indice de base étant le dernier indice publié à la date d'émission du

Les prix mentionnés dans le Contrat ou le devis ne comprennent pas la TVA, les taxes sur les ventes, les droits, les prélèvements, les taxes sur le chiffre d'affaires, les droits de douane et d'importation, les surtaxes, les droits de timbre, les impôts retenus à la source et toutes les autres taxes similaires qui peuvent être imposées au Prestataire, à ses employés, à ses sociétés affiliées et/ou à ses représentants, dans le cadre de l'exécution du Contrat (les « Impôts »), qui seront supportés par le Client en supplément des prix indiqués. Le Prestataire restera toutefois responsable du paiement de tous les impôts applicables en

Au cas où le Prestataire serait obligé de payer l'un des Impôts mentionnés ci-dessus, le Client remboursera le Prestataire dans les trente (30) jours suivant la réception des documents correspondants justifiant le paiement de celui-ci. Au cas où ce remboursement serait interdit par toute législation applicable, le Prestataire aura le droit d'augmenter les prix indiqués dans le devis ou spécifiés dans le Contrat du montant des Impôts réellement

Sauf indication contraire dans le devis, les prix des Prestations relatifs à des quantités à réaliser, quelle qu'en soit l'unité (notamment sans que cela ne soit exhaustif, profondeurs, mètres linéaires, nombre d'essais, etc) ne sont que des estimatifs sur la base des informations du Client, en conséquence seules les quantités réellement réalisées seront facturées sur la base des prix unitaires du Contrat.

4.1 Le terme « Prestations » désigne exclusivement les prestations énumérées dans le devis du Prestataire comme étant comprises dans le devis à la charge du Prestataire. Toute

prestation non comprise dans les Prestations, ou dont le prix unitaire n'est pas indiqué au Contrat, fera l'objet d'un prix nouveau à négocier.

4.2 Par référence à la norme NF P 94-500, il appartient au maître d'ouvrage, au maître d'œuvre ou à toute entreprise de faire réaliser impérativement par des ingénieries compétentes chacune des missions géotechniques (successivement GI, G2, G3 et G4 et les investigations associées) pour suivre toutes les étapes d'élaboration et d'exécution du projet Si la mission d'investigations est compandée seulle alle est limité à l'exécution projet. Si la mission d'investigations est commandée seule, elle est limitée à l'exécution matérielle de sondages et à l'établissement d'un compte rendu factuel sans interprétation et elle exclut toute activité d'étude, d'ingénierie ou de conseil, ce que le Client reconnait et accepte expressément.

La mission de diagnostic géotechnique G5 engage le géotechnicien uniquer

cadre strict des objectifs ponctuels fixés et acceptés expressément par écrit.

4.3 Sauf disposition contraire expresse du devis, le Client obtiendra à ses propres frais, dans un délai permettant le respect du délai d'exécution du Contrat, tous les permis et autorisations d'importation nécessaires pour l'importation des matériels et équipements et l'exécution des Prestations dans le pays où les matériels et équipements doivent être livrés et où les Prestations doivent être exécutées. En plus de ce qui précède et sauf à ce que l'une ou plusieurs des obligations suivantes soient expressément et spécifiquement intégrées aux Prestations et au bordereau de prix, le Client devra également, notamment, sans que cela ne soit exhaustif :

- Payer au Prestataire les Prestations conformément aux conditions du Contrat ;
- Communiquer en temps utile toutes les informations et/ou documentations nécessaires pour l'exécution du Contrat et notamment, mais pas seulement, tout élément qui lui paraîtrait de nature à compromettre la bonne exécution des Prestations ou devant être pris en compte par le Prestataire ;
- Permettre un accès libre et rapide au Prestataire à ses locaux et/ou au site où sont réalisées les Prestations y compris pour la livraison des matériels et équipements

- nécessaires à la réalisation des Prestations et notamment, mais pas seulement, les
- Approuver tous les documents du Prestataire conformément au devis et à défaut ns un délai de deux jours au plus ;
- Préparer ses installations pour l'exécution du Contrat, et notamment, sans que cela ne soit exhaustif, décider et préparer les implantations des forages, fournir eau et électricité, et veiller, le Client étant toujours responsable de ses installations, à ce que le Prestataire dispose en permanence de toutes les ressources nécessaires pour exécuter le Contrat, sauf accord spécifique contraire dans le Contrat. Si le Personnel du Client est tenu d'exécuter un travail lié au Contrat incluant, mais sans s'y limiter, l'assemblage ou l'installation d'équipements, ce personnel sera qualifié et restera en permanence sous la responsabilité du Client. Le Client conservera le droit exclusif de diriger et de superviser le travail quotidien de son personnel. Dans ce cas, le Prestataire ne sera en aucun cas responsable d'une négligence ou d'une faute du personnel du Client dans l'exécution de ses tâches, y compris les conséquences que cette négligence ou faute peut avoir sur le Contrat. Par souci de clarté, tout soustraitant du Prestataire imposé ou choisi par le Client restera sous l'entière responsabilité du Client :
 - fournir, conformément aux articles R.554-I et suivants du même chapitre du code de l'environnement, à sa charge et sous sa responsabilité, l'implantation des réseaux privés, la liste et l'adresse des exploitants des réseaux publics à proximité des travaux, les plans, informations et résultats des investigations complémentaires consécutifs à sa Déclaration de projet de Travaux (DT). Ces informations sont indispensables pour permettre les éventuelles déclarations d'intentions de commencement de travaux (DICT) (le délai de réponse, est de 7 à 15 jours selon les cas, hors jours fériés) et pour connaître l'environnement du projet. En cas d'incertitude ou de complexité pour la localisation des réseaux sur le domaine public, il pourra être nécessaire de faire réaliser, à la charge du Client, des fouilles manuelles ou des avant-trous à la pelle mécanique pour les repérer. Les conséquences et la responsabilité de toute détérioration de ces réseaux par suite d'une mauvaise communication sont à la charge exclusive du Client.
 - Déclarer aux autorités administratives compétentes tout forage réalisé, notamment, sans que cela ne soit exhaustif, de plus de 10 m de profondeur ou lorsqu'ils sont destinés à la recherche, la surveillance ou au prélèvement d'eaux souterraines (piézomètres notamment).
- $\textbf{4.4 La responsabilité du Prestataire ne saurait être engagée en aucun cas pour quel.que dommage que ce soit à des ouvrages publics ou privés (notamment, à titre d'exemple, des$ ouvrages, canalisations enterrés) dont la présence et l'emplacement précis ne lui auraient pas été signalés par écrit préalablement à l'émission du dernier devis et intégrés au Contrat.

5. Obligations générales du Prestataire

Le Prestataire devra

- Exécuter avec le soin et la diligence requis ses obligations conformément au Contrat, toujours dans le respect des spécifications techniques et du calendrier convenus entre
- Respecter toutes les règles internes et les règles de sécurité raisonnables qui sont communiquées par le Client par écrit et qui sont applicables dans les endroits où les Prestations doivent être exécutées par le Prestataire ;
- S'assurer que son personnel reste à tout moment sous sa supervision et direction et exercer son pouvoir de contrôle et de direction sur ses équipes ;
- Procéder selon les moyens actuels de son art, à des recherches consciencieuses et à fournir les indications qu'on peut en attendre, étant entendu qu'il s'agit d'une obligation de moyen et en aucun cas d'une obligation de résultat ou de moyens
- Faire en sorte que son personnel localisé dans le pays de réalisation des Prestations respecte les lois dudit pays.

Le Prestataire n'est solidaire d'aucun autre intervenant sauf si la solidarité est explicitement prévue et expressément agréée dans le devis et dans ce cas la solidarité ne s'exerce que sur la durée de réalisation sur site du Client du Contrat.

En cas d'intervention du Prestataire sur site du Client, si des éléments de terrain diffèrent des informations préalables fournies par le Client, le Prestataire peut à tout moment décider que la protection de son personnel n'est pas assurée ou adéquate et suspendre ses Prestations jusqu'à ce que les mesures adéquates soient mises en œuvre pour assurer la protection du personnel, par exemple si des traces de pollution sont découvertes ou révélées. Une telle suspension sera considérée comme un Imprévu, tel que défini à l'article

À défaut d'engagement précis, ferme et expresse du Prestataire dans le devis sur une date finale de réalisation ou une durée de réalisation fixe et non soumise à variations, les délais d'intervention et d'exécution données dans le devis sont purement indicatifs et, notamment du fait de la nature de l'activité du Prestataire, dépendante des interventions du Client ou de tiers, ne sauraient en aucun cas engager le Prestataire. Les délais de réalisation sont soumis aux ajustements tels qu'indiqués au Contrat. À défaut d'accord exprès spécifique contraire, il ne sera pas appliqué de pénalités de retard. Nonobstant toute clause contraire, les pénalités de retard, si elles sont prévues, sont plafonnées à un montant total maximum et cumulé pour le Contrat de 5% du montant total HT du Contrat.

Le Prestataire réalise le Contrat sur la base des informations communiquées par le Client. Ce dernier est seul responsable de l'exactitude et de la complétude de ces données et transmettra au Prestataire toute information nécessaire à la réalisation des Prestations. En cas d'absence de transmission, d'inexactitude de ces données ou d'absence d'accès au(x) site(s) d'intervention, quelles que soient les hypothèses que le Prestataire a pu prendre, notamment en cas d'absence de données ou d'accès, le Prestataire est exonéré de toute responsabilité et les délais de réalisation sont automatiquement prolongés d'une durée au moins équivalente à la durée de correction de ces données et de reprise des Prestations correspondantes.

7. Formalités, autorisations et accès, obligations d'information, dégâts aux

À l'exception d'un accord contraire dans les conditions spécifiques du devis ou dans les cas d'obligations législatives ou règlementaires non transférable par convention à la charge du Prestataire, toutes les démarches et formalités administratives ou autres, pour l'obtention des autorisations et permis de pénétrer sur les lieux et/ou d'effectuer les Prestations sont à la charge du Client. Le Client doit obtenir et communiquer les autorisations requises pour l'accès du personnel et des matériels nécessaires au Prestataire en toute sécurité dans l'enceinte des propriétés privées ou sur le domaine public. Le Client doit également fournir tous les documents et informations relatifs aux dangers et aux risques de toute nature, notamment sans que cela ne soit exhaustif, ceux cachés, liés aux réseaux, aux obstacles enterrés, à l'historique du site et à la pollution des sols, sous-sols et des nappes. Le Client communiquera les règles pratiques que les intervenants doivent respecter en matière de santé, sécurité, hygiène et respect de l'environnement. Il assure également en tant que de besoin la formation du personnel, notamment celui du Prestataire, sur les règles propres à son site, avant toute intervention sur site. Le Client sera responsable de tout dommage corporel, matériel ou immatériel, consécutif ou non-consécutif, résultant des évènements mentionnés au présent paragraphe et qui n'aurait pas été mentionné au Prestataire. Lorsque les Prestations consistent à mesurer, relever voire analyser ou traiter des sols

pollués, le Prestataire a l'obligation de prendre les mesures nécessaires pour protéger son personnel dans la réalisation desdites Prestations, sur la base des données fournies par le

Les forages et investigations de sols et sous-sols peuvent par nature entraîner des dommages sur le site en ce compris tout chemin d'accès, en particulier sur la végétation, les cultures et les ouvrages existants, sans qu'il y ait négligence ou faute de la part du Prestataire. Ce dernier n'est en aucun cas tenu de remettre en état ou réparer ces dégâts, sauf si la remise en état et /ou les réparations font partie des Prestations, et n'est en aucun cas tenu d'indemniser le Client ou les tiers pour lesdits dommages inhérents à la réalisation des Prestations.

8. Implantation, nivellement des sondages À l'exception des cas où l'implantation des sondages fait partie des Prestations à réaliser par le Prestataire, ce dernier est exonéré de toute responsabilité dans les événements consécutifs à ladite implantation et est tenu indemne des conséquences liées à la décision d'implantation, tels que notamment, sans que cela ne soit exhaustif, le retard de réalisation, les surcoûts et/ou la perte de forage. Les Prestations ne comprennent pas les implantations topographiques permettant de définir l'emprise des ouvrages et zones à étudier ni la mesure des coordonnées précises des points de sondages ou d'essais. Les éventuelles altitudes indiquées pour chaque sondage (qu'il s'agisse de cotes de références rattachées à un repère arbitraire ou de cotes NGF) ne sont données qu'à titre indicatif. Seules font foi les profondeurs mesurées depuis le sommet des sondages et comptées à partir du niveau du sol au moment de la réalisation des essais.

9. Hydrogéologie - Géotechnique

- 9.1 Les niveaux d'eau indiqués dans le rapport final d'exécution des Prestations correspondent uniquement aux niveaux relevés au droit des sondages exécutés et au moment précis du relevé. En dépit de la qualité de l'étude les aléas suivants subsistent, notamment la variation des niveaux d'eau en relation avec la météo ou une modification de l'environnement des études et Prestations. Seule une étude hydrogéologique spécifique permet de déterminer les amplitudes de variation de ces niveaux et les PHEC (Plus Hautes . Eaux Connues).
- 9.2 L'étude géotechnique s'appuie sur les renseignements reçus concernant le projet, sur un nombre limité de sondages et d'essais, et sur des profondeurs d'investigations limitées qui ne permettent pas de lever toutes les incertitudes inéluctables à cette science naturelle. En dépit de la qualité de l'étude, des incertitudes subsistent du fait notamment du caractère ponctuel des investigations, de la variation d'épaisseur des remblais et/ou des différentes couches, de la présence de vestiges enterrés et de bien d'autres facteurs telle que la variation latérale de faciès. Les conclusions géotechniques ne peuvent donc conduire à traiter à forfait le prix des fondations compte tenu d'une hétérogénéité, naturelle ou du fait de l'homme, toujours possible et des aléas d'exécution pouvant survenir lors de la découverte des terrains. Si un caractère évolutif particulier a été mis en lumière (notamment à titre d'exemple glissement, érosion, dissolution, remblais évolutifs, tourbe), l'application des recommandations du rapport nécessite une actualisation à chaque étape
- du projet notamment s'il s'écoule un laps de temps important avant l'étape suivante. 9.3 L'estimation des quantités des ouvrages géotechniques nécessite, une mission d'étude géotechnique de conception G2 (phase projet). Les éléments géotechniques non décelés par l'étude et mis en évidence lors de l'exécution (pouvant avoir une incidence sur les conclusions du rapport) et les incidents importants survenus au cours des travaux (notamment glissement, dommages aux avoisinants ou aux existants) doivent obligatoirement être portés à la connaissance du Prestataire ou signalés aux géotechniciens chargés des Prestations de suivi géotechnique d'exécution G3 et de supervision géotechnique d'exécution G4, afin que les conséquences sur la conception géotechnique et les conditions d'exécution soient analysées par un homme de l'art.

10. Pollution - dépollution Lorsque l'objet de la Prestation est le diagnostic ou l'analyse de la pollution de sols et/ou sous-sols, ou l'assistance à la maitrise d'œuvre ou la maitrise d'œuvre de prestations de dépollution, le Client devra désigner un coordonnateur de Sécurité et de Protection de la Santé sur le site (SPS), assister le Prestataire pour l'obtention des autorisations nécessaires auprès des autorités compétentes, fournir au Prestataire toute information (notamment visite sur site, documents et échantillons) nécessaire à l'obtention des Certificats d'Acceptation Préalable de Déchets ainsi que pour l'obtention des autorisations nécessaire au transport, au traitements et à l'élimination des terres, matériaux, effluents, rejets, déchets, et plus généralement de toute substance polluante.

Sauf s'il s'agit de l'objet des Prestations tel que précisé au devis, notre devis est réalisé sur la base d'un site sur lequel il n'existe aucun danger potentiel lié à la présence de produits radioactifs.

Les missions d'assistance à maitrise d'œuvre ou de maitrise d'œuvre seront exercées conformément à l'objectif de réhabilitation repris dans le devis. À défaut d'une telle définition d'objectif, ces missions ne pourront commencer.

II. Rapport de mission, réception des Prestations par le Client

Sauf disposition contraire du Contrat et sous réserve des présentes conditions générales, la remise du dernier document à fournir dans le cadre des Prestations marque la fin de la réalisation des Prestations. La fin de la réalisation des Prestations sur site du Client est marquée par le départ autorisé du personnel du Prestataire du site. L'approbation du dernier document fourni dans le cadre des Prestations doit intervenir au plus tard deux semaines après sa remise au Client. A défaut de rejet explicite et par écrit par le Client dans ce délai, le document sera considéré comme approuvé. L'émission de commentaires ne vaut pas rejet et n'interrompt pas le délai d'approbation. Le Prestataire répondra aux commentaires dans les dix (10) jours de leur réception. A défaut de rejet explicite et par écrit par le Client dans les cinq (6) jours de la réception des réponses aux commentaires ou du document modifié, le document sera considéré comme approuvé. Si le Client refuse le document et que le document n'est toujours pas approuvé deux (2) mois après sa remise initiale, les Parties pourront mettre en œuvre le processus de règlement des litiges tel que défini au Contrat. A défaut de mise en œuvre de ce processus, le rapport sera considéré comme approuvé définitivement trois mois après la date de sa remise initiale au Client.

12. Réserve de propriété, confidentialité

Les coupes de sondages, plans et documents établis par le Prestataire dans le cadre des Prestations ne peuvent être utilisés, publiés ou reproduits par des tiers sans son

autorisation. Le Client ne peut pas les utiliser pour d'autres ouvrages sans accord écrit préalable exprès du Prestataire. Le Client s'engage à maintenir confidentielle et à ne pas utiliser pour tout autre objectif que celui prévu au Contrat ou pour le compte de tiers, toute information se rapportant au savoir-faire, techniques et données du Prestataire, que ces éléments soient brevetés ou non, dont le Client a pu avoir connaissance au cours des Prestations ou qui ont été acquises ou développées par le Prestataire au cours du Contrat, sauf accord préalable écrit exprès du Prestataire.

13. Propriété Intellectuelle

Si dans le cadre du Contrat, le Prestataire met au point, développe ou utilise une nouvelle technique, celle-ci est et/ou reste sa propriété exclusive. Le Prestataire est libre de déposer tout brevet s'y rapportant. Le Prestataire est titulaire des droits d'auteur et de propriété sur les résultats et/ou données compris, relevés ou utilisés dans les ou, au cours des, Prestations et/ou développés, générés, compilés et/ou traités dans le cadre du Contrat. Le Prestataire concède au Client, sous réserve qu'il remplisse ses obligations au titre du Contrat, un droit non exclusif de reproduction des documents remis dans le cadre des Prestations pour la seule utilisation des besoins de l'exploitation, la maintenance et l'entretien du site Client concerné.

En cas de reproduction des documents remis par le Prestataire dans le cadre des Prestations, le Client s'engage à indiquer la source en portant sur tous les documents diffusés intégrant lesdits documents du Prestataire, quelle que soit leur forme, la mention suivante en caractères apparents : « source originelle : Groupe Fondasol – date du document : JJ/MM/AAAA » sans que ces mentions ne puissent être interprétées comme une quelconque garantie donnée par le Prestataire. Le Client s'engage à ce que tout tiers à qui il aurait été dans l'obligation de remettre l'un ou les documents, se conforme à l'obligation de citation de la source originelle telle que prévue au présent article

14. Modifications du contenu des Prestations en cours de réalisation

La nature des Prestations et des moyens à mettre en œuvre, les prévisions des avancements et délais, ainsi que les prix sont déterminés en fonction des éléments communiqués par le Client et ceux recueillis lors de l'établissement du devis. Des conditions imprévisibles par le Prestataire au moment de l'établissement du devis touchant à la géologie et éléments de terrains et découvertes imprévues, aux hypothèses de travail, au projet et à son environnement, à la législation et aux règlements, à des événements imprévus, survenant au cours de la réalisation des Prestations (l'ensemble désigné par les « Imprévus ») pourront conduire le Prestataire à proposer au Client un ou des avenant(s) avec notamment application des prix du bordereau du devis, ou en leur absence, de nouveau prix raisonnables et des délais de réalisation mis à jour. À défaut d'un refus écrit exprès du Client dans un délai de sept (7) jours à compter de la réception de la proposition d'avenant ou de modification des Prestations, ledit avenant ou modification des Prestations devient pleinement effectif et le Prestataire est donc rémunéré du prix de cet avenant ou de cette modification des Prestations, en sus. En cas de refus écrit exprès du Client, le Prestataire est en droit de suspendre immédiatement l'exécution des Prestations jusqu'à confirmation écrite expresse du Client des modalités pour traiter de ces Imprévus et accord des deux Parties sur lesdites modalités. Les Prestations réalisées à cette date sont facturées et rémunérées intégralement, sans que le Client ne puisse faire état d'un préjudice. Le temps d'immobilisation du personnel du Prestataire est rémunéré selon le prix unitaire indiqué dans le bordereau de prix du devis. Dans l'hypothèse où le Prestataire notifie qu'il est dans l'impossibilité d'accepter les modalités de traitement des Imprévus telles que demandées par le Client, ce dernier aura le droit de résilier le Contrat selon les termes prévus à l'article 19.2 (Résiliation).

15. Modifications du projet après fin de mission, délai de validité du rapport Le rapport de fin de mission, quel que soit son nom, constitue une synthèse des Prestatio telle que définie au Contrat. Ce rapport et ses annexes forment un ensemble indissociab Toute interprétation, reproduction partielle ou totale, ou utilisation par un autre maître de l'ouvrage, un autre constructeur ou maître d'œuvre, ou conseil desdits maitre d'ouvrage, constructeur ou maître d'œuvre pour un projet différent de celui objet du Contrat est interdite et ne saurait en aucun cas engager la responsabilité du Prestataire à quel.q.ue titre que ce soit. La responsabilité du Prestataire ne saurait être engagée en dehors du cadre de la mission objet du rapport. Toute modification apportée au projet, au site, à l'ouvrage et/ou à son environnement non révélé expressément au Prestataire lors de la réalisation des Prestations ou dont il lui a été demandé de ne pas tenir compte, rend le rapport caduc, dégage la responsabilité du Prestataire et engage celle du Client. Le Client doit faire actualiser le dernier rapport émis dans le cadre du Contrat en cas d'ouverture du chantier (pour lequel le rapport a été émis) plus d'un an après remise dudit rapport. Il en est de même notamment en cas de travaux de terrassements, de démolition ou de réhabilitation du site (à la suite d'une contamination des terrains et/ou de la nappe) modifiant entre autres les qualités mécaniques, les dispositions constructives et/ou la répartition de tout ou partie des sols sur les emprises concernées par l'étude géotechnique

Le Prestataire ne sera pas responsable, de quel.q.ue manière que ce soit, de la nonexécution ou du retard d'exécution de ses obligations à la suite d'un événement de Force majeure. La Force Majeure sera définie comme un événement qui empêche l'exécution totale ou partielle du Contrat et qui ne peut être surmonté en dépit des efforts raisonnables de la part de la Partie affectée, qui lui est extérieure. La Force Majeure inclura, notamment les événements suivants: catastrophes naturelles ou climatiques, pénurie de main d'œuvre qualifiée ou de matières premières, incidents majeures affectant la production des agents ou sous-traitants du Prestataire, actes de guerre, de terrorisme, sabotages, embargos, insurrections, émeutes ou atteintes à l'ordre public.

Tout événement de Force Maieure sera notifié par écrit à l'autre Partie dès que raisonnablement possible. Si l'événement de Force Majeure se poursuit pendant plus de deux (2) mois et que les Parties ne se sont pas mises d'accord sur les conditions de poursuite du Contrat, l'une ou l'autre des Parties aura le droit de résilier le Contrat, sur préavis écrit d'au moins trente (30) jours adressé à l'autre Partie, auquel cas la stipulation de la clause de Résiliation du Contrat s'appliquera.

Quand l'événement de Force Majeure aura cessé de produire ses effets, le Prestataire

reprendra l'exécution des obligations affectées dès que possible. Le délai de réalisation sera automatiquement prolongé d'une période au moins équivalente à la durée réelle des effets de l'événement de Force Majeure. Tous frais supplémentaires raisonnablement engagés par le Prestataire suite à l'événement de Force Majeure seront remboursés par le Client au Prestataire contre présentation de la preuve de paiement associée et de la facture

17. Conditions de paiement, acompte, retenue de garantie

Aucune retenue de garantie n'est appliquée sur les paiements des Prestations. Dans le cas où le Contrat nécessite une intervention d'une durée supérieure à un mois, des factures mensuelles intermédiaires sont établies et envoyées par le Prestataire pour paiement par le Client. Les paiements interviennent à réception et sans escoi paiement par le Client. Les paiements interviennent à reception et sans escompte. L'acompte dont le montant est défini dans les conditions particulières du devis est déduit de la <u>facture ou décompte final(e)</u>. En cas de sous-traitance par le Client au Prestataire dans le cadre d'un ouvrage public, les factures du Prestataire sont réglées directement et intégralement par le maître d'ouvrage, conformément à la loi n°75-1334 du 31/12/1975.

En l'absence de paiement au plus tard le jour suivant la date de règlement figurant sur la facture, il sera appliqué à compter dudit jour et de plein droit, un intérêt de retard égal au taux d'intérêt appliqué par la Banque Centrale Européenne à son opération de refinancement la plus récente majorée de 10 points de pourcentage. Cette pénalité sera exigible sans qu'un rappel ou mise en demeure soit nécessaire à compter du jour suivant la date de règlement figurant sur la facture.

En sus de ces pénalités de retard, le Client sera redevable de plein droit des frais de

ecouvrement exposés ou d'une indemnité forfaitaire de 40 €.

Si la carence du Client rend nécessaire un recouvrement contentieux, le Client s'engage à payer, en sus du principal, des frais, dépens et émoluments ordinairement et légalement à sa charge et des dommages-intérêts éventuels, une indemnité fixée à 15% du montant TTC de la créance avec un minimum de 500 euros. Cette indemnité est due de plein droit, sans mise en demeure préalable, du seul fait du non-respect de la date de paiement. Les Parties reconnaissent expressément qu'elle constitue une évaluation raisonnable de l'indemnité de recouvrement et de l'indemnisation des frais de recouvrement.

Un désaccord quelconque dans le cadre de l'exécution des Prestations ne saurait en aucun cas constituer un motif de non-paiement des Prestations réalisées et non soumises à contestation précise et documentée. La compensation est formellement exclue. En conséquence, le Client s'interdit de déduire le montant des préjudices qu'il allègue du prix des Prestations facturé ou de retenir les paiements.

18. Suspension

L'exécution du Contrat ne peut être suspendue par le Prestataire que dans les cas suivants : En cas d'Imprévus.

- En cas de violation par le Client d'une ou plusieurs de ses obligations contractuelles,
- En cas de Force Majeure

Ouand l'un des événements mentionnés ci-dessus se produit. le Prestataire a le droit de notifier au Client son intention de suspendre l'exécution du Contrat. Dans ce cas, le délai de réalisation sera prolongé d'une période équivalente à la durée de cette suspension et tous les frais associés engagés par le Prestataire suite à cette suspension seront remboursés par le Client contre présentation des preuves de paiement associées, en ce compris l'indemnité d'immobilisation au taux prévu au devis. Le Prestataire peut soumettre la reprise des obligations suspendues au remboursement par le Client au Prestataire des sommes mentionnées ci-dessus.

Si l'exécution du Contrat est suspendue pendant une période de plus de deux (2) mois, le Prestataire aura le droit de résilier le Contrat immédiatement sur préavis écrit d'au moins trente (30) jours, auquel cas les stipulations de l'article « Résiliation » (19.2 et suivants) du Contrat s'appliqueront. À partir du moment où les obligations du Prestataire ou le Contrat sont suspendus pendant une durée égale ou supérieure à deux (2) mois, les Prestations seront considérées comme finies et acceptées par le Client.

19. Résiliation

Toute procédure de résiliation est obligatoirement précédée d'une tentative de négociation et résolution amiable du différend.

19.1 Résiliation pour manquement

Si l'une des Parties commet une violation substantielle du Contrat. l'autre Partie peut demander, par écrit, que la Partie défaillante respecte les conditions du Contrat. Si dans un délai de trente (30) jours, ou dans un autre délai dont les Parties auront convenu, après la réception de cette demande, la Partie défaillante n'a pas pris de mesures satisfaisantes pour respecter le Contrat, la Partie non défaillante peut, sans préjudice de l'exercice des autres droits ou recours dont elle peut disposer, résilier le Contrat en remettant à la Partie défaillante une notification écrite à cet effet.

19.2 Résiliation pour insolvabilité ou événement similaire ou après suspension prolongée Si l'une ou l'autre des Parties est en état de cessation des paiements ou devient incapable de répondre à ses obligations financières, ou après une suspension supérieure à deux (2) mois, l'autre Partie peut, sans préjudice de l'exercice des autres droits ou recours dont elle peut disposer, résilier le Contrat en remettant à la première Partie une notification à cet effet. Cette résiliation entrera en vigueur à la date où ladite notification de résiliation est reçue par la première Partie.

19.3 Indemnisation pour résiliation

En cas de résiliation du Contrat en totalité ou en partie par le Client ou le Prestataire, conformément aux stipulations des Articles 19.1 ou 19.2, le Client paiera au Prestataire :

- Le solde du prix des Prestations exécutées conformément au Contrat, à la date de résiliation non encore payées, et
- Les coûts réellement engagés par le Prestataire jusqu'à la date de résiliation pour la réalisation des Prestations y compris si certaines Prestations ne sont pas terminées,
- les coûts engagés par le Prestataire suite à la résiliation, y compris, mais sans s'y limiter, tous les frais liés à l'annulation de ses contrats de sous-traitance ou de ses contrats avec ses propres fournisseurs et les frais engagés pour toute suspension prolongée (le cas échéant), et $\,$
- un montant raisonnable pour compenser les frais administratifs et généraux du Prestataire du fait de la résiliation, qui ne sera en aucun cas inférieur à quinze (15)

pour cent du prix des Prestations restant à effectuer à la date de résiliation. En cas de résiliation du Contrat due à un événement de Force Majeure conform l'Article 16, le Client paiera au Prestataire les montants mentionnés aux alinéas (i), (ii) et (iii) ci-dessus et tous les autres frais raisonnables engagés par le Prestataire suite à l'événement de Force Majeure et à la suspension associée.

19.4 Effets de la résiliation

La résiliation du Contrat en totalité ou en partie, pour quel.q.ue raison que ce soit, n'affectera pas les stipulations du présent article et des articles concernant la propriété intellectuelle, la confidentialité, la limitation de responsabilité, le droit applicable et le règlement des différends

20. Répartition des risques, responsabilités

20.1 Le Prestataire n'est pas tenu d'avertir son Client sur les risques encourus déjà connus ou ne pouvant être ignorés du Client compte-tenu de sa compétence. Le devoir de conseil du Prestataire vis-à-vis du Client ne s'exerce que dans les domaines de compétence requis pour l'exécution des Prestations spécifiquement confiées. Tout élément nouveau connu du Client après la fin de la réalisation des Prestations doit être communiqué au Prestataire qui pourra, le cas échéant, proposer la réalisation d'une prestation complémentaire. A défaut de communication des éléments nouveaux ou d'acceptation de la prestation complémentaire, le Client en assumera toutes les conséquences. En aucun cas, le Prestataire ne sera tenu pour responsable des conséquences d'un non-respect de ses préconisations ou d'une modification de celles-ci par le Client pour quel que raison que ce soit. L'attention du Client est attirée sur le fait que toute estimation de quantités faite à partir des données obtenues par prélèvements ou essais ponctuels sur le site objet des Prestations possède une représentativité limitée et donc incertaine par rapport à l'ensemble du site pour lequel elles seraient extrapolées.

20.2 Le Prestataire est responsable des dommages qu'il cause directement par l'exécution

de ses Prestations, dans les conditions et limites du Contrat. A ce titre, il est responsable de ses Prestations dont la défectuosité lui est imputable. Nonobstant toute clause contraire dans le Contrat ou tout autre document, la responsabilité totale et cumulée du Prestataire au titre du ou en relation avec le Contrat sera plafonnée au prix total HT du Contrat et à dix mille (10 000) euros pour tout Contrat dont le prix HT serait inférieur à ce montant, quel que soit le fondement de la responsabilité (contractuelle, délictuelle, garantie, légale

ou autre). Nonobstant toute clause contraire dans le Contrat ou tout autre document, il est expressément convenu que le Prestataire ne sera pas responsable des dommages immatériels consécutifs et/ou non-consécutifs à un dommage matériel et ne sera pas responsable des dommages tels que, notamment, la perte d'exploitation, la perte de production, le manque à gagner, la perte de profit, la perte de contrat, la perte d'image, l'immobilisation de personnel ou d'équipements, que ceux-ci soient considérés directs ou

20.3 Le Prestataire sera garanti et indemnisé en totalité par le Client contre tous recours, demandes, actions, procédures, recherches en responsabilité de toute nature de la part de tiers au Contrat à l'encontre du Prestataire du fait des Prestations.

Le Prestataire bénéficie d'un contrat d'assurance au titre de la responsabilité décennale afférente aux ouvrages soumis à obligation d'assurance, conformément à l'article L.241-1 du Code des assurances. À ce titre et en toute hypothèse y compris pour les ouvrages non soumis à obligation d'assurance, les ouvrages dont la valeur HT (travaux et honoraires compris) excède au jour de la déclaration d'ouverture de chantier un montant de 15 M€ HT doivent faire l'objet d'une déclaration auprès du Prestataire. Il est expressément convenu que le Client a l'obligation d'informer le Prestataire d'un éventuel dépassement de ce seuil, et accepte, de fournir tous éléments d'information nécessaires à l'adaptation de la garantie. Au-delà de 15 M€ HT de valeur de l'ouvrage, le Client prend également l'engagement, de souscrire à ses frais un Contrat Collectif de Responsabilité Décennale (CCRD), contrat dans lequel le Prestataire sera expressément mentionné parmi les bénéficiaires. Le Client prendra en charge toute éventuelle sur-cotisation qui serait demandée au Prestataire par rapport aux conditions de base de son contrat d'assurance. Par ailleurs, les ouvrages de caractère exceptionnel, voire inhabituels sont exclus du contrat d'assurance en vigueur et doivent faire l'objet d'une cotation particulière. A défaut de respecter ces engagements, le Client en supportera les conséquences financières. Le maître d'ouvrage est tenu d'informer le Prestataire de la DOC (déclaration d'ouverture de chantier).

l'ouvrage seront supportées par le Client.

22. Changement de lois

Si à tout moment après la date du devis du Prestataire au Client, une loi, un règlement, une norme ou une méthode entre en vigueur ou change, et si cela augmente le coût de réalisation des Prestations, ou si cela affecte plus généralement l'une des conditions du Contrat, tel que, mais sans que ce ne soit limitatif, le délai de réalisation ou les garanties, le prix du Contrat sera ajusté en fonction de l'augmentation des coûts subie par le Prestataire du fait de ce changement et supporté par le Client. Les autres conditions du Contrat affectées seront ajustées de bonne foi pour refléter ce/ces changement(s).

23. Interprétation, langue

En cas de contradiction ou de conflit entre les termes des différents documents composant le Contrat tel qu'indiqué en article 1, les documents prévalent l'un sur l'autre dans \dot{l} ordre dans lequel ils sont énoncés audit article I. Sauf clause contraire spécifique dans le devis, tout rapport et/ou document objet des Prestations sera fourni en français. Les titres des articles des présentes conditions générales n'ont aucune valeur juridique ni interprétative.

24. Cessibilité de Contrat, non-renonciation

Le Contrat ne peut être cédé, en tout ou en partie, par le Client ou le Prestataire à un tiers sans le consentement exprès, écrit, préalable de l'autre Partie. La sous-traitance par le Prestataire n'est pas considérée comme une cession au titre du présent article. Le fait que le Prestataire ne se prévale pas à un moment donné de l'une quelconque des stipulations du Contrat et/ou tolère un manquement par le Client à l'une quelconque des obligations visées dans le Contrat ne peut en aucun cas être interprété comme valant renonciation par le Prestataire à se prévaloir ultérieurement de l'une quelconque desdites stipulations.

Si une stipulation du Contrat est jugée par une autorité compétente comme nulle et inapplicable en totalité ou en partie, la validité des autres stipulations du Contrat et le reste de la stipulation en question n'en sera pas affectée. Le Client et le Prestataire remplaceront cette stipulation par une stipulation aussi proche que possible de la stipulation rendue invalide, produisant les mêmes effets juridiques que ceux initialement prévus par le Client

26. Litiges - Attribution de juridiction LE PRESENT CONTRAT EST SOUMIS AU DROIT FRANÇAIS ET TOUT LITIGE RELATIF AUDIT CONTRAT (SA VALIDITE, SON INTERPRETATION, SON EXISTENCE, SA REALISATION, DEFECTUEUSE OU TOTALE, SON EXPIRATION OU SA RESILIATION NOTAMMENT) SERA SOUMIS EXCLUSIVEMENT AU DROIT FRANÇAIS. À DEFAUT D'ACCORD AMIABLE DANS UN DELAI DE 30 JOURS SUIVANT L'ENVOI

D'UNE CORRESPONDANCE FAISANT ETAT D'UN DIFFEREND, TOUT LITIGE SERA SOUMIS POUR RESOLUTION AUX JURIDICTIONS DU RESSORT DU SIÈGE SOCIAL DU PRESTATAIRE QUI SONT SEULES COMPÉTENTES, ET AUXQUELLES LES PARTIES ATTRIBUENT COMPETENCE EXCLUSIVE, MÊME EN CAS DE DEMANDE INCIDENTE OU D'APPEL EN GARANTIE OU DE PLURALITÉ DE DÉFENDEURS. LA LANGUE DU CONTRAT ET DE TOUT REGLEMENT DES LITIGES EST LE FRANÇAIS.

NOVEMBRE 2018

ANNEXE 2: ABREVIATIONS

Cette annexe contient 2 pages

Abréviation	Définition
ADES	Portail national d'Accès aux Données sur les Eaux Souterraines
AEP	Adduction en Eau Potable
APB	Arrêté de Protection de Biotope
ARIA	Analyse, Recherche et Information sur les Accidents
ARS	Agence Régionale de Santé
ASTDR	Agency for Toxic Substances and Disease Registry
BARPI	Bureau d'Analyse des Risques de Pollutions Industrielles
BASIAS	Base de données des Anciens Sites Industriels et Activités de Service
BASOL	Base de données sur les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif
BRGM	Bureau de Recherches Géologiques et Minières
BSS	Banque de données du Sous-Sol
BTEX	Hydrocarbures mono-aromatiques : Benzène, Toluène, Ethylbenzène et Xylènes
CASIAS	Cartes des Anciens Sites Industriels et Activités de Service
COHV	Composés Organiques Halogénés Volatils
DIB	Déchets Industriels Banals
DICT	Déclarations d'Intention de Commencement de Travaux
DJA	Dose Journalière Admissible
DJE	Dose Journalière d'Exposition
DREAL	Direction Régionale de l'Environnement, de l'Aménagement et du Logement
DRIEE	Direction Régionale Interdépartementale de l'Environnement et de l'Énergie

Abréviation	Définition
ENS	Espaces naturels sensibles
EQRS	Évaluation Quantitative des Risques Sanitaires
ERI	Excès de Risque Individuel de cancer
ERU	Excès de Risque Unitaire
FNADE	Fédération Nationale des Activités de Dépollution et de l'Environnement
FOD	Fioul domestique
HAP	Hydrocarbures Aromatiques Polycycliques (16 composés US EPA)
НСТ	Hydrocarbures Totaux C ₁₀ -C ₄₀
HV	Hydrocarbures Volatils C ₅ -C ₁₀
ICPE	Installations Classées pour la Protection de l'Environnement
IGN	Institut Géographique National
INPN	Inventaire National du Patrimoine Naturel
ISDD	Installation de Stockage de Déchets Dangereux
ISDI	Installation de Stockage de Déchets Inertes
ISDND	Installation de Stockage de Déchets Non Dangereux
J&E	Johnson & Ettinger
INERIS	Institut National de l'Environnement Industriel et des Risques
LD	Limite de Détection
LQ	Limite de Quantification
MEDDE	Ministère de l'Écologie, du Développement Durable et de l'Énergie
MTÉS	Ministère de la Transition écologique et solidaire
8 ETM	8 éléments traces métalliques (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn)
MS	Matière Sèche

Abréviation	Définition
NGF	Nivellement Général de la France
ОЕННА	Office of Environmental Health Hazard Assessment
OMS	Organisation Mondiale de la Santé
Pack ISDI	 analyses sur brut : Carbone Organique Total (COT), HAP, BTEX, PCB, HCT test de lixiviation : COT, 12 métaux lourds, chlorures, sulfates, fraction soluble, indice phénol, fluorures.
РСВ	Polychlorobiphényles
POA	Pesticides organo-azotés
POC	Pesticides organochlorés
POP	Pesticides organophosphorés
PNR	Parc Naturel Régional
QD	Quotient de Dangers
RAMSAR	Zone humide d'importance internationale
RIVM	Institut National de Santé Publique et de l'Environnement, Hollande
SAGE	Schéma d'Aménagement et de Gestion des Eaux
SDAGE	Schéma Directeur d'Aménagement et de Gestion des Eaux
SIC	Site d'Importance Communautaire
SIGES	Système d'Information pour la Gestion des Eaux Souterraines
TPH	Total Petroleum hydrocarbons : coupe pétrolière incluant 8 fractions aliphatiques et 8 fractions aromatiques
USEPA	United States Environmental Protection Agency
VTR	Valeurs Toxicologiques de Référence
ZICO	Zone Importante pour la Conservation des Oiseaux
ZNIEFF	Zone Naturelle d'Intérêt Écologique, Faunistique et Floristique
ZPS	Zone de Protection Spéciale
	<u> </u>

ANNEXE 3 : NORMES ET METHODOLOGIE

Cette annexe contient 4 pages

METHODOLOGIE NATIONALE DES SITES ET SOLS POLLUES

La méthodologie retenue par FONDASOL Environnement pour la réalisation de cette étude prend en compte :

- à la Circulaire ministérielle du 8 février 2007 relative aux sites et sols pollués Modalités de gestion et de réaménagement des sites pollués, complétée en avril 2017;
- au référentiel de certification de service des prestataires dans le domaine des sites et sols pollués dite « certification LNE SSP » du 30 mai 2011 – Révision n°7 de février 2022;
- les exigences de la norme NF X 31-620-1 à 5 « Qualité du sol Prestations de services relatives aux sites et sols pollués » de décembre 2021.

NORMES DE PRELEVEMENT ET DOCUMENTS DE REFERENCE

Les prélèvements de sol ont été réalisés conformément aux normes en vigueur, notamment :

- norme NF ISO 18400-101 de juillet 2017 : « Qualité du sol Echantillonnage Partie 101 : Cadre pour la préparation et l'application d'un plan d'échantillonnage », qui annule et remplace la norme NF ISO 10381-1 de mai 2003 ;
- norme NF ISO 18400-102 de décembre 2017 : « Qualité du sol Echantillonnage Partie 102 : Choix et application des techniques d'échantillonnage », qui annule et remplace la norme NF ISO 10381-2 de mars 2003 ;
- norme NF ISO 18400-103 de décembre 2017 : « Qualité du sol Echantillonnage Partie 103 : Sécurité », qui annule et remplace la norme NF ISO 10381-3 de mars2002 ;
- norme NF ISO 18400-104 de décembre 2017 : « Qualité du sol Echantillonnage Partie 104 : Stratégies et évaluations statistiques » ;
- norme NF ISO 18400-105 de décembre 2017 : « Qualité du sol Echantillonnage Partie 105 : Emballage, transport, stockage et conservation des échantillons » qui annule et remplace la norme NF ISO 10381-6 de juin 2009 ;
- norme NF ISO 18400-106 de décembre 2017 : « Qualité du sol Echantillonnage Partie 106 : Contrôle de la qualité et assurance de la qualité » ;
- norme NF ISO 18400-107 de décembre 2017 : « Qualité du sol Echantillonnage Partie 107 : Enregistrement et notification » ;
- norme NF ISO 18400-201 de décembre 2017 : « Qualité du sol Echantillonnage Partie 201 : Prétraitement physique sur le terrain » ;
- norme NF ISO 18400-202 d'avril 2019 : « Qualité du sol Echantillonnage Partie 20 : 2 : Diagnostics préliminaires » ;

- norme NF ISO 18400-203 d'avril 2019 : « Qualité du sol Echantillonnage Partie 203 : Investigation des sites potentiellement contaminés » ;
- norme NF ISO 18512 d'octobre 2007 « Qualité du sol Lignes directrices relatives au stockage des échantillons de sol à long et court termes » ;
- norme NF ISO 10381-5 de décembre 2005 : « Qualité du sol Echantillonnage Partie 5 : Lignes directrices pour la procédure d'investigation des sols pollués en sites urbains et industriels » ;
- norme NF X 31-003 de décembre 1998 : « Qualité du sol Description du sol » ;
- norme NF X 31-100 de décembre 1992 : « Qualité des sols Echantillonnage Méthode de prélèvement d'échantillons de sol » ;
- norme NF ISO 15800 de mars 2020 : « Caractérisation des sols en lien avec l'évaluation de l'exposition des personnes ».

Les prélèvements des eaux souterraines ont été réalisés conformément aux normes en vigueur, notamment :

- guide méthodologique pour la recherche et l'origine de pollutions dans les eaux souterraines de 2004 établi par le BRGM ;
- norme NF X 31-614 de décembre 2017 : « Réalisation d'un forage de contrôle ou de suivi de la qualité de l'eau souterraine au droit et autour d'un site potentiellement pollué » :
- norme NF X 31-615 de décembre 2017 : « Prélèvement et échantillonnage des eaux souterraines dans des forages de surveillance pour la détermination de la qualité des eaux souterraines » ;
- norme NF ISO 5667-3 de juin 2018 : « Qualité de l'eau : Lignes directrices pour la conservation et la manipulation des échantillons d'eau » ;
- norme NF ISO 5667-14 de juin 2018 : « Qualité de l'eau Echantillonnage Partie 14 : Lignes directrices sur l'assurance qualité et le contrôle qualité pour l'échantillonnage et la manutention des eaux Guide méthodologique pour la recherche et l'origine de pollutions dans les eaux souterraines environnementales » ;
- norme NF ISO 5667-11 du 20/04/2019 « Qualité de l'eau Échantillonnage Partie 11 : lignes directrices pour l'échantillonnage des eaux souterraines ».

Les gaz du sol ont été prélevés conformément aux normes et guides en vigueur, notamment :

- norme NF ISO 18400-204 de juillet 2017 : « Qualité du sol Echantillonnage Partie 204 : Lignes directrices pour l'échantillonnage des gaz de sol » ;
- norme NF ISO 10381-7 de janvier 2006 « Qualité du sol Echantillonnage Partie 7
 Lignes directrices pour l'échantillonnage des gaz du sol » ;
- guide pratique pour la caractérisation des gaz du sol et de l'air intérieur en lien avec une pollution des sols et/ou des eaux souterraines - Rapport provisoire du BRGM et de l'INERIS - Version 3.0 du 25 novembre 2016;
- guide méthodologique « Projet FLUXOBAT, Evaluation des transferts de COV du sol vers l'air intérieur et extérieur » en date de novembre 2013 ;

• fascicule de documentation FD X 31-611-1 de juillet 1997 : « Qualité du sol – Méthodes de détection et de caractérisation des pollutions – Partie I : Guide général pour les analyses des gaz des sols in situ employées en criblage de terrain.

Les prélèvements d'air ambiant ont été réalisés conformément aux normes :

- norme NF EN 14662-1 de novembre 2005 « Qualité de l'air ambiant méthode normalisée pour le mesurage des concentrations en benzène – Partie I : Echantillonnage par pompage suivi d'une désorption thermique et d'une méthode chromatographie en phase gazeuse »;
- norme NF EN 14662-2 de novembre 2005 « Qualité de l'air ambiant méthode normalisée pour le mesurage des concentrations en benzène – Partie 2 : Prélèvement par pompage suivi d'une désorption au solvant et d'une méthode de chromatographie en phase gazeuse » ;
- norme NF EN 14662-3 de décembre 2015 « Qualité de l'air ambiant méthode normalisée pour le mesurage des concentrations en benzène – Partie 3 : Prélèvement par pompage automatique avec une méthode chromatographique en phase gazeuse » ;
- norme NF EN 14662-4 de novembre 2005 « Qualité de l'air ambiant méthode normalisée pour le mesurage des concentrations en benzène – Partie 4 : Echantillonnage par diffusion suivi d'une désorption thermique et d'une chromatographie en phase gazeuse »;
- norme NF EN 14662-5 de novembre 2005 « Qualité de l'air ambiant méthode normalisée pour le mesurage des concentrations en benzène Partie 5 : Prélèvement par diffusion suivi d'une désorption au solvant et d'une chromatographie gazeuse » ;
- norme NF ISO 16017-1 de mars 2001 : « Air intérieur, air ambiant et air des lieux de travail – Echantillonnage et analyse des composés organiques volatils par tube à adsorption/désorption thermique/chromatographie en phase gazeuse sur capillaire – Partie I : Echantillonnage par pompage » ;
- norme NF X 43-267 de juin 2014 : « Air des lieux de travail Prélèvement et analyse de gaz et vapeurs organiques – Prélèvement par pompage sur tube à adsorption et désorption au solvant » ;
- guide pratique pour la caractérisation des gaz du sol et de l'air intérieur en lien avec une pollution des sols et/ou des eaux souterraines – Rapport BRGM-INERIS – Novembre 2016.

Les prélèvements des terres excavées ont été réalisés conformément au :

- norme NF ISO 18512 d'octobre 2007 : « Qualité du sol Lignes directrices relatives au stockage des échantillons de sol à long et court termes » ;
- norme NF ISO 18176 d'avril 2003 : « Caractérisation de la terre excavée et d'autres matériaux du sol destinés à la réutilisation » ;
- norme NF ISO 18400-102 de décembre 2017 : « Qualité du sol Echantillonnage Partie 102 : Choix et application des techniques d'échantillonnage », qui annule et remplace la norme NF ISO 10381-2 de mars 2003 ;
- norme NF ISO 18400-103 de décembre 2017 : « Qualité du sol Echantillonnage Partie 103 : Sécurité », qui annule et remplace la norme NF ISO 10381-3 de mars 2002 ;

- norme NF ISO 18400-104 de décembre 2019 : « Qualité du sol Echantillonnage Partie 104 : Stratégies et évaluations statistiques » ;
- norme NF ISO 18400-107 de décembre 2017 : « Qualité du sol Echantillonnage Partie 107 : Enregistrement et notification » ;
- norme NF ISO 18400-202 d'avril 2019 : « Qualité du sol Echantillonnage Partie 202 : Diagnostics préliminaires » ;
- norme NF ISO 18400-203 d'avril 2019 : « Qualité du sol Echantillonnage Partie 203 : investigation des sites potentiellement contaminés Qualité du sol Échantillonnage Partie 203 : Investigation des sites potentiellement pollués » ;
- guide de valorisation hors site des terres excavées issues de sites et sols potentiellement pollués dans des projets d'aménagement – Rapport BRGM-INERIS – avril 2020.

ANNEXE 4: PROPRIETES PHYSICO-CHIMIQUES DES COMPOSES RECHERCHES

Cette annexe contient 3 pages

N° CAS	Composés	Formule chimique	Volatilité	Densité	Solubilité	Classem	ent cancé	rogénéité
						Classification EU	Classification IARC	Classification US-EPA

+ + : Pv > 1000 Pa

+ + : S > 10 000 mg/L

- : d < I ≈ : 10 Pa > P > 0,5 Pa

-: I50 mg/L > S > I mg/L

-: 0.5 > Pa > 10-2 Pa

- - : S < I mg/L

--: 10-2 > Pa > 10-5 Pa

---: Pv < 10-5 Pa

N° CAS	Substances (Dénomination int)	Formule chimique						
	Métaux Lourds							
-	Antimoine	Sb				-	-	-
-	Arsenic	As				CIA	ı	Α
-	Baryum	Ba					-	-
-	Cadmium	Cd				CIB/C2 MIB/M2 RIB/R2	1	probablemen cancérigène
-	Chrome	Cr				CIA MIB R2	1	A (inhalation D (ingestion)
-	Cuivre	Cu				-	-	-
7439-97-6	Mercure	Hg	Entre ≈ et selon la forme du mercure	+		-	-	-
-	Molybdène	Мо					-	-
-	Nickel	Ni				C2	2B	Α
-	Plomb	Pb				RIA	2B	B2
-	Sélénium	Se					-	-
-	Zinc	Zn				-	-	-
	Composés Organo Halogénés Volatils (COHV)							
75-01-4	Chlorure de Vinyle	CH2=CHCI	++		+	CIA	I	Α
75-09-2	Dichlorométhane	CH2Cl2	++	+	++	C2	2B	B2
67-66-3	Trichlorométhane	CHCI3	++		+	C2	2B	B2
56-23-5	Tétrachlorométhane	CCI4	++	+	+	C2	2B	B2
79-01-6	Trichloroéthylène	C2HCI3	++	+	+	CIB M2	1	A
127-18-4	Tétrachloroéthylène	C2Cl4	++	+	-	C2	2A	ВІ
71-55-6	I,I,I-Trichloroéthane	C2H3Cl3	++	+	+	-	-	-
79-00-5	I,I,2-Trichloroéthane	C2H3Cl3	++		+	C2	3	С
75-34-3	I,I-Dichloroéthane	C2H4Cl2	++		+	-	-	С
107-06-2	1,2-Dichloroéthane	C2H4Cl2	++	+	+	CIB	2B	B2
156-59-2	cis-1,2-Dichloroéthène	CHCI=CHCI	++	+	+	-	-	-
156-60-5	Trans-1,2-Dichloroéthylène	CHCI=CHCI	++	+	+	-	-	-
75-35-4	I,I-Dichloroéthylène	C2H2Cl2	++	+	+	-	_	-

N° CAS	Composés	Formule chimique	Volatilité	Densité	Solubilité	Classem	ent cancé	rogénéité
						Classification EU	Classification IARC	Classification US-EPA
	ВТЕХ							
71-43-2	Benzène	C6H6	++		+	CIA MIB	1	A
108-88-3	Toluène	C7H8	++		+	-	2B	С
100-41-4	Ethylbenzène	C8HI0	++		+	-	2B	-
95-47-6	o-Xylène	C8HI0	+	+	+	-	3	D
108-38-3 (m) 106-42-3 (p)	m,p-Xylène	C8H10	++	+ +	+	-	3 -	D -
47	Hydrocarbures aliphatiques							
1	Hydrocarbures aliphatiques C5-C6		++	-	-	-	-	-
1	Hydrocarbures aliphatiques C6-C8		++	-	-	-	-	-
1	Hydrocarbures aliphatiques C8-C10		+	-		-	-	-
1	Hydrocarbures aliphatiques C10-C12		+	-		-	-	-
1	Hydrocarbures aliphatiques C12-C16		≈	-		-	-	-
1	Hydrocarbures aliphatiques C16-C21		-	-		-	-	-
1	Hydrocarbures aliphatiques C21-C35			-		-	-	-
	Hydrocarbures aromatiques							
1	Hydrocarbures aromatiques C6-C7		++	-	+	-	-	-
1	Hydrocarbures aromatiques C7-C8		++	-	+	-	-	-
1	Hydrocarbures aromatiques C8-C10		+	-	-	-	-	-
1	Hydrocarbures aromatiques C10-C12		+	-	-	-	-	-
1	Hydrocarbures aromatiques C12-C16		≈	-	-	-	-	-
1	Hydrocarbures aromatiques C16-C21		-	-		-	-	-
1	Hydrocarbures aromatiques C21-C35			-		-	-	-
	HAP							
83-32-9	Acénaphtène	CI2HI0	-	+	-	-	-	-
208-96-8	Acénaphtylène	C12H8				-	-	D
120-12-7	Anthracène	C14H10		+	-	-	3	D
56-55-3	Benzo(a)anthracène	C18H12				CIB	2A	B2
50-32-8	Benzo(a)pyrène	C20H12				CIB MIB RIB	ı	A
205-99-2	Benzo(b)fluoranthène	C20H12		+		CIB	2B	B2
191-24-2	Benzo(g,h,i)pérylène	C22H12		+		-	3	D
207-08-9	Benzo(k)fluoranthène	C20-H12		+		CIB	2B	B2
218-01-9	Chrysène	C18H12		+		CIB M2	3	B2
50-70-3	Dibenzo(a,h)anthracène	C22H14		+		CIB	2A	B2
206-44-0	Fluoranthène	C16H10		+		-	3	D
86-73-7	Fluorène	C13H10		+	-	-	3	D
193-39-5	Indéno(1,2,3-cd)pyrène	C22-H12		+		-	2B	B2

N° CAS	Composés	Formule chimique	Volatilité	Densité	Solubilité	Classem	ent cancéi	rogénéité
						Classification EU	Classification IARC	Classification US-EPA
91-20-3	Naphtalène	CI0H8	+	+	-	C2	2B	С
85-01-8	Phénanthrène	CI4HI0		+	-	-	3	D
129-00-0	Pyrène	C16H10		+		-	3	D
	РСВ							
1336-36-3	PCB - 42 % p/p en chlore			+	+			
1336-36-3	PCB - 54 % p/p en chlore			+	-	-	I	B2
1336-36-3	PCB - 60 % p/p en chlore			+	-			

ANNEXE 5: METHODES ANALYTIQUES, LIMITES DE QUANTIFICATION ET FLACONNAGE

Cette annexe contient 5 pages

AGROLAB - Flaconnage sols

Numéro de reference : Sol 0,375 L/LV2661

AGROLAB - Flaconnage eaux

AL-WEST B.V. MF-03217-FR

Edition: 3.00

Applicable à partir de: 03.07.2020

Page 1 de 2

Liste du flaconnage - Transport international

	Numéro Nom	Nature flacon, couleur Couleur du bouchon	Volume	Picto- gramme	Conservateur Instruction de remplissage	Nombre de bouteilles	Paramètre
	A206	PE,	050 1			1	I', Br, BrO ₃ ', Cl', Cr(VI), couleur, F', NO ₂ ', NO ₃ ', o-PO ₄ 3', Silicate, SO ₄ 2', COD
	Neutral	Blanc /	250 ml			1	Perchlorate - 1 bouteille spécifique remplie à moitié
41	State of the state	Rouge				2	DBO ₅
						1	Turbidité,
_		PE,				1	Résidu à sec
	A004	Blanc /	500 ml			2	Matières en suspension
	Neutral	rouge	000 1111			2	Test Daphnies / matière inhibitrice
		Tougo				1	PFC
						3	PFC LOQ basse
	17-689-578	756 Act			20 - 20 - 10 - 10 - 10 - 10 - 10 - 10 -	1	PCB, HAP (methode interne), hydrocarbures totaux
A	A205	Verre,	250 ml		Remplir à 90%		(méthode interne),
11	Organics	Brun / Noir	200 111		seulement	1	Alcools, Solvants polaires
						1	Chlorobenzènes non volatils
						2	EOX
						1	Détergent anionique
						1	Détergent cationique
						1	Détergent non ionique
						2	HAP (ISO),
						2	TPHWG (GC) (+A113 si pas de volatils commandés
	A400	Verre,	500 ml		Remplir à 90%	2	Phtalates, screening GC-MS- non volatils
10	Organics	Vert / Noir			seulement	2	Pesticides / fongicides (POC, POP)
						2	Huiles et graisses
						2	Pesticides POA
						1	Organoétains
						1	Glycols
						4	Dioxines et furanes, PCB_dI Explosifs
						2	Hydrocarbures totaux selon ISO 9377-2:
	A401	Verre,			H ₂ SO ₄	2	Hydrocarbures totaux-10 μg/L
	Organics	Vert / Blanc	500 ml		Ne pas rincer	1	Phénois
		09/20/23/25/25/2003/26			982 (100 (00 (00 (00 (00 (00 (00 (00 (00 (00	1	Chlorophėnols
					Thiosulphate	1	E.coli, coliformes, bactéries à 20°C et 36°C +
	A002	PE,			Ne pas rincer		x (x = Enterocoque or Clostridium perfringens or
14	Mibio	Blanc / Bleu	250 ml		Remplir		Pseudomonas.aeruginosa)
31	1111010	Biano / Bioa			complétement	1	Pour chaque paramètre additionnel
					sans déborder	4	Salmonelles (eaux souterraines)
	A203	PET,			Sans bulles		
	CO ₂	Blanc /	250 ml		Remplir	1	HCO3, CO2, CO3, pH, conductivité, TA/TAC
11	003	Blanc			complétement		
S.	A200	Verre,			HNO ₃		
U	AOX	Brun / Vert	250 ml	4	Ne pas rincer	1	AOX, VOX
	A208 COD, N, P	PE, Blanc / Blanc	250 ml	(F)	H ₂ SO ₄ Ne pas rincer	1	DCO, NTK, P, NH., COT, KMnO.

AL-WEST B.V.

MF-03217-FR

Page 2 de 2

Edition: 3.00 Applicable à partir de: 03.07.2020

Liste du flaconnage - Transport international

	Numéro Nom	Nature flacon, couleur Couleur du bouchon	Volume	Picto- gramme	Conservateur Instruction de remplissage	Nombre de bouteilles	Paramètre
	A102 Metals	PE, Blanc / Noir	100 ml		HNO₂ Ne pas rincer	1	B, Hg, métaux lourds, dureté totale
	A113 VOC	Verre, Brun / Blanc	100 ml	③	H ₂ SO ₂ Ne pas rincer Remplir complètement	1 1 1	Composés organiques volatils: COHV, BTEX, chlorobenzènes volatils, Hydrocarbures volatils GC-MS screening volatils Méthane, éthane, éthène
	A211 Sulfide	PE, Transparent/ Noir	250 ml	(!)	Contient ZnAc ₂ +NaOH Ne pas rincer	1	Sulfures
	A105 Sulfite	PE, Blanc / Blanc	60 ml	(!)	EDTA Ne pas rincer	1	Sulfites
	A106 Phenol- index	Verre, Brun / Blanc	60 ml	\Diamond	H₂SO ₄	1	Indice phénol
t	A107 Fe II, Mn II	Verre, Transparent/ Noir	100 ml	!	HCI Ne pas rincer Sans bulles Remplir complétement	1	Fe (II), Mn (II)
	A114 Cyanide	PE, Noir / Bleu	60 ml		NaOH Ne pas rincer	1	Cyanures
	A109 Oxygen	PET, Transparent/ Blanc	125 ml		Sans bulles Remplir complétement	1	Oxygène
	A204 CO ₂ marble test	PET, Transparent/ Noir	250 ml		Marbre	1	TAC saturés en CaCO ₃

Pour de plus amples informations, n'hésitez pas à contacter votre service clientèle. Tous les conservateurs répondent aux exigences de la norme EN ISO 5667-3 et conditions spécifiques locales.

AGROLAB – Méthodes analytiques et limites de quantification

				AL WEST	BV				
AGROLAB - Composés	Sols			Eaux soute	erraines		Ga	z du sol	
	Méthodes	LQ	Unités	Méthodes	LQ	Unités	Méthodes	LQ	Unités
Métaux Lourds									
Antimoine	Conforme à EN-ISO 11885, EN 16174	0.5	mg/kg	EN-ISO 17294-2	5	μg/l	-	-	-
Arsenic	Conforme à EN-ISO 11885, EN 16174	I	mg/kg	EN-ISO 17294-2	5	µg/l	-	-	-
Baryum	Conforme à EN-ISO 11885, EN 16174	I	mg/kg	EN-ISO 17294-2	10	µg/l	-	-	-
Cadmium	Conforme à EN-ISO 11885, EN 16174	0.1	mg/kg	EN-ISO 17294-2	0.1	μg/l	-	-	-
Chrome	Conforme à EN-ISO 11885, EN 16174	0.2	mg/kg	EN-ISO 17294-2	2	µg/l	-	-	-
Cuivre	Conforme à EN-ISO 11885, EN 16174	0.2	mg/kg	EN-ISO 17294-2	2	μg/l	-	-	-
Mercure	Conforme à EN-ISO 11885, EN 16174	0.05	mg/kg	EN-ISO 17294-2	0.03	μg/l	NF ISO 17733	0.008	µg/tube
Molybdène	Conforme à EN-ISO 11885, EN 16174	I	mg/kg	EN-ISO 17294-2	2	μg/l	-	-	-
Nickel	Conforme à EN-ISO 11885, EN 16174	0.5	mg/kg	EN-ISO 17294-2	5	μg/l	-	-	-
Plomb	Conforme à EN-ISO 11885, EN 16174	0.5	mg/kg	EN-ISO 17294-2	5	µg/l	-	-	-
Sélénium	Conforme à EN-ISO 11885, EN 16174	ı	mg/kg	EN-ISO 17294-2	5	µg/l	-	_	-
Zinc	Conforme à EN-ISO 11885, EN 16174	I	mg/kg	EN-ISO 17294-2	2	μg/l	-	-	-
Composés Organo Halogénés Volatils (COHV)									
Chlorure de Vinyle	Conforme à ISO 22155	0.02	mg/kg	Méthode interne (mesurage conforme à EN-ISO 10304 et conforme à ISO 11423-1)	0.2	μg/l	méthode interne	0.1	µg/tube
Dichlorométhane	Conforme à ISO 22155	0.05	mg/kg	Conforme à EN-ISO 10301	0.5	μg/l	méthode interne	0.25	μg/tube
Trichlorométhane	Conforme à ISO 22155	0.05	mg/kg	Conforme à EN-ISO 10301	0.5	μg/l	méthode interne	0.2	μg/tube
Tétrachlorométhane	Conforme à ISO 22155	0.05	mg/kg	Conforme à EN-ISO 10301	0.1	µg/l	méthode interne	0.2	µg/tube
Trichloroéthylène	Conforme à ISO 22155	0.05	mg/kg	Conforme à EN-ISO 10301	0.5	μg/l	méthode interne	0.05	μg/tube
Tétrachloroéthylène	Conforme à ISO 22155	0.05	mg/kg	Conforme à EN-ISO 10301	0.1	μg/l	méthode interne	0.2	μg/tube
I,I,I-Trichloroéthane	Conforme à ISO 22155	0.05	mg/kg	Conforme à EN-ISO 10301	0.5	μg/l	méthode interne	0.2	μg/tube
1,1,2-Trichloroéthane	Conforme à ISO 22155	0.05	mg/kg	Conforme à EN-ISO 10301	0.5	μg/l	méthode interne	0.2	μg/tube
I,I-Dichloroéthane	Conforme à ISO 22155	0.1	mg/kg	Conforme à EN-ISO 10301	0.5	µg/l	méthode interne	0.2	μg/tube
1,2-Dichloroéthane	Conforme à ISO 22155	0.05	mg/kg	Conforme à EN-ISO 10301	0.5	μg/l	méthode interne	0.2	µg/tube
cis-1,2-Dichloroéthène	Conforme à ISO 22155	0.025	mg/kg	Conforme à EN-ISO 10301	0.5	µg/l	méthode interne	0.2	μg/tube
Trans-1,2-Dichloroéthylène	Conforme à ISO 22155	0.025	mg/kg	Conforme à EN-ISO 10301	0.5	μg/l	méthode interne	0.2	µg/tube
I,I-Dichloroéthylène	ISO 22155	0.1	mg/kg	Conforme à EN-ISO 10301	0.1	µg/l	méthode interne	0.1	µg/tube
CAV				Conforma à EN ISO 11423					
toluène, éthylbenzène, o-xylènes	Conforme à ISO 22155	0.05	mg/kg	Conforme à EN-ISO 11423-	0.5	µg/l	méthode interne	0.1	µg/tube
m,p-xylène	Conforme à ISO 22155	0.1	mg/kg	Conforme à EN-ISO 11423- I Conforme à EN-ISO 11423-	0.2	μg/l	méthode interne	0.1	μg/tube
Benzène	Conforme à ISO 22155	0.05	mg/kg		0.2	µg/l	méthode interne	0.05	μg/tube
Hydrocarbures C6-C10	EN ISO 16558-1	ı	mg/kg	Méthode interne (mesurage conforme à EN-ISO 10301 et conforme à ISO 11423-1)	10	μg/l	méthode interne	5	µg/tube
Hydrocarbures C10-C40	ISO 16703	20	mg/kg	Équivalent à EN-ISO 9377-2	50	μg/l	-	-	-
Hydrocarbures aliphatiques									
Hydrocarbures aliphatiques C5-C6	EN ISO 16558-1	10	mg/kg	MADEP	10	µg/l	méthode interne	2	μg/tube
Hydrocarbures aliphatiques C6-C8	EN ISO 16558-1	10	mg/kg	MADEP	10	μg/l	-	-	-
Hydrocarbures aliphatiques C8-C10	EN ISO 16558-1	10	mg/kg	MADEP	10	μg/l	méthode interne	2	μg/tube
Hydrocarbures aliphatiques C10-C12	conforme à ISO/TS 16558-2	10	mg/kg	MADEP	10	µg/l	méthode interne	2	µg/tube
Hydrocarbures aliphatiques C12-C16	conforme à ISO/TS 16558-2	10	mg/kg	MADEP	10	μg/l	méthode interne	2	μg/tube
Hydrocarbures aliphatiques C16-C21	conforme à ISO/TS 16558-2	10	mg/kg	MADEP	10	μg/l	-	-	-
Hydrocarbures aliphatiques C21-C35	conforme à ISO/TS 16558-2	10	mg/kg	MADEP	10	μg/l	-	-	-
Hydrocarbures aromatiques									
Hydrocarbures aromatiques C6-C7	EN ISO 16558-1	10	mg/kg	MADEP	10	µg/l	méthode interne	0.05	μg/tube
Hydrocarbures aromatiques C7-C8	EN ISO 16558-1	10	mg/kg	MADEP	10	µg/l	méthode interne	0.1	µg/tube
Hydrocarbures aromatiques C8-C10	EN ISO 16558-1	10	mg/kg	MADEP	10	μg/l	méthode interne	2	μg/tube
Hydrocarbures aromatiques C10-C12	conforme à ISO/TS 16558-2	10	mg/kg	MADEP	10	μg/l 	méthode interne	2	μg/tube
Hydrocarbures aromatiques C12-C16	conforme à ISO/TS 16558-2	10	mg/kg	MADEP	10	μg/l	méthode interne	2	μg/tube
Hydrocarbures aromatiques C16-C21	conforme à ISO/TS 16558-2	10	mg/kg	MADEP	10	μg/l	-	-	-
Hydrocarbures aromatiques C21-C35	conforme à ISO/TS 16558-2	10	mg/kg	MADEP	10	µg/l	-	-	-

НАР									
Acénaphtène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	µg/l	méthode interne	0.05	µg/filtre
Acénaphtylène	NF EN 16181	0.05	mg/kg	Méthode interne	0.05	µg/l	méthode interne	0.05	µg/filtre
Anthracène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	µg/l	méthode interne	0.05	µg/filtre
Benzo(a)anthracène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
Benzo(a)pyrène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	µg/l	méthode interne	0.05	µg/filtre
Benzo(b)fluoranthène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
Benzo(g,h,i)pérylène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
Benzo(k)fluoranthène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
Chrysène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
Dibenzo(a,h)anthracène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
Fluoranthène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
Fluorène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
Indéno(1,2,3-cd)pyrène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
Naphtalène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.01	μg/l	méthode interne	0,05*	µg/filtre
Phénanthrène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
Pyrène	NF EN 16181	0.05	mg/kg	EN ISO 17993 (F18)	0.005	μg/l	méthode interne	0.05	µg/filtre
РСВ									
Somme des 7 PCB congénères (PCB 28, 52, 101, 118, 138, 153, 180)	NEN-EN 16167	0.001	mg/kg	Équivalent à EN-ISO 6468	0.01	µg/l	méthode interne	0.02	µg/filtre

ANNEXE 6: FICHES DE PRELEVEMENT DES SOLS ET DES TERRES A EXCAVER

Cette annexe contient 10 pages

Le géo-référencement des sondages, la gestion des cuttings et des rebouchages, le protocole de prélèvement, la date d'envoi des échantillons et les conditions de transport sont indiqués dans le rapport.

fon	d	a	5	5

		tude (WGS84)	Latitude (WGS84)	Elévation		Prof. atte	einte	Niveau	au d'eau
S21		489300	43,402468900	Non renseigr	né	2,0 m		☑ Néa	éant ☐ Non mesuré ☐ En cours de forage
5 (1								⊔ Stal	abilisé 🗌 Non stabilisé 🗎 Sec
Début	2022 12	·25	Fin 12/04/2022 12:	<u> </u>		Machin Tarière		<u> </u>	Opérateur TOUSSAINT Brice
		étéorologiques	12/04/2022 12.	73		Flaconr		<u> </u>	Préleveur
Couve						Bocaux			Eliès ARIKA
	Lithologie						Mesur	es	<u> </u>
Prof.	===		Description		Ech	antillons	PID (pp	m)	Indices organoleptiques
0		Couche de forme gr 0,2 m	avelo-sableuse beige			0.00 - 0.20 m) 0,2 m	0 m 0 0,2 n		0 m Aucun 0,2 m
		Sables gravelo-sable	eux brun à beige			0.20 - 0.70 m)	0,2 n		0,2 m
-	10-10	0,7 m			(),7 m	0,7 m	ı	0,7 m
							0,7 m		0,7 m
		Limon marron foncé	avec grave		S21 (C	0.70 - 0.90 m)	0		Aucun
		0,9 m			C),9 m	0,9 m		0,9 m
1		Limon sableux beige	e (Calcaire)		S21 (O	1.90 - 2.00 m)	0,9 n		O,9 m
		2 m				2 m	2 m		2 m
2				Į.			2 111		~
Les pa	ramètre	s analysés sont i	ndiqués dans le rapp	ort					
www.s	oilcloud	l.fr							

		\ -
		L

(N° Projet: PR.69EN.22.0018)

	7 1			••••							PORT DE BOUC		
	Long	itude (WGS84)	Latitude	(WGS84)	Elévation		Prof. att	einte	Niveau d'	eau		\neg	
S22	4,976	6489300	43,4024	168900	Non renseig	ŋné	1,0 m		☑ Néant □ Stabilis	□ Non sé □ No	mesuré □ En cours de forage on stabilisé □ Sec		
Début			Fin				Machir	ne '			Opérateur	\neg	
12/04/2	2022 12	2:00	12/0	04/2022 12:2	0		Tarière	diam. 9	0		TOUSSAINT Brice		
Condit	ions me	étéorologiques					Flacon	nage			Préleveur		
Couve	rt						Bocaux	<			Eliès ARIKA		
O Prof.	Lithologie		Descri	ption		Echai	ntillons	Mesure PID (ppi 0 m	es m)		Indices organoleptiques O m		
0.0 - 0.0 - 0.0		_	ouche de forme gravelo-sableuse beige ,2 m					2 (0.00 - 0.20 o			Aucun		
	3 1.3	0,2 m	0,2 m				2 m	0,2 m 0,2 m			0,2 m 0,2 m		
		0,2 m Limon beige à marron					20 - 0.60 n)	0			Aucun		
		0,6 m				0,0	6 m	0,6 m			0,6 m	-	
		Calcaire Refus à 1.00 m sur calcaire					60 - 1.00 n)	0,6 m			0,6 m Aucun		
1		1 m				1	m	1 m			1 m	\longrightarrow	
1													

Les paramètres analysés sont indiqués dans le rapport

www.soilcloud.fr

	Longi	tude (WGS84)	Latitude (WGS84)	Elévation		Prof. atte	einte	Nivea	au d'eau		
S23		435000	43,402344200	Non renseig	gné	1,5 m		☑ Né	éant 🗌 Non	mesuré 🛭 Er	cours de forage
								☐ Sta	abilisé 🗌 No	on stabilisé 🗌	Sec
Début 12/04/2	M22 12	20	Fin 12/04/2022 13:45	=		Machine Tarière		<u> </u>		Opérateur TOUSSAINT	Prico
		téorologiques	12/04/2022 13.43	J		Flaconr				Préleveur	brice
Couver						Bocaux				Eliès ARIKA	
Prof.	Lithologie		Description		Ech	antillons	Mesure PID (pp	es m)		Indices organ	olentiques
0	2521		Description		Len	aritinoris	0 m	_		0 m	
		Couche de forme gra 0,3 m	velo-sableuse beige			0.00 - 0.30 m)	0 0,3 n			Aucu 0,3 r	ın
-	1000	0,5 111				,,5 111	0,3 n			0,3 r	
	5 5 5 5	Limon gravelo-sableu	x marron		S23 (0	0.30 - 0.50 m)	0			Aucu	ın
		0,5 m),5 m	0,5 n			0,5 r	
		Limon gravelo-sableu	x beige		S23 ((0.50 - 1.00 m)	0,5 n			0,5 г	
1	5 5 5 5	1 m				1 m	1 m 1 m			<u>1 m</u> 1 m	
		Limon gravelo-sableu Refus à 1.50 m sur roc			S23 (*	l.00 - 1.50 m)	0			Aucu	ın
	20220	1,5 m			1	,5 m	1,5 m			1,5 r	n
_											
			idiqués dans le rappoi	t							
www.sc	oilcloud	fr									

fon	d	assl

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

Longitude (WGS84) Latitude (WGS84) Elevation Prof. atteinte Niveau d'eau Stabilisé Sec Sec Sec Sec Stabilisé Sec Sec Sec Stabilisé Sec Sec												PORT DE BOOC	
Debut Fin Machine Opérateur 12/04/2022 14:10 12/04/2022 14:25 Tarrèrer diam. 90 TOUSSAINT Brice Conditions météorologiques Flaconnage Préleveur Couvert Bocaux Eliès ARIKA		Long	itude (WGS84)	Lat	titude (WGS84)	Elévation		Prof. att	einte	Niv	/eau d'eau		
12/04/2022 14:10 12/04/2022 14:25 Tarière cliam. 90 TOUSSAINT Brice	S24	4,976	5591800	43	,402369300	Non renseig	jné	1,0 m		\ <u>\</u>	Néant □ Non Stabilisé □ No	mesuré 🗌 En cours de forage on stabilisé 🔲 Sec	
Flaconage	Début				Fin			Machin	e		Opérateur		
Description Echandillons Mesures Indices organoleptiques	12/04/:	2022 14	l:10		12/04/2022 14:25	5		Tarière	diam. 90)		TOUSSAINT Brice	
Description Echanellions Mesures Indices organoleptiques	Condit	tions m	étéorologiques					Flaconr	age			Préleveur	
Couche de forme gravelo-sableuse	Couve	rt						Bocaux				Eliès ARIKA	
Limon graveleux légèrement sableux noirâtre à gris foncé S24 (0.30 - 0.60 m)		Lithologie	0,1 m Sable marron gravele	S24 (0 S24 (0	0.00 - 0.10 m) 0,1 m	PID (pp 0 m 0 0,1 m 0,1 m	m) !		0 m Aucun 0,1 m 0,1 m Aucun				
Calcaire fracturé S24 (0.60 - 1.00 0 Aucun 1m 1m 1m 1m		_ 0 _ 0 _ 0 _ 0 _ 0 _ 0		is foncé	,	m)	0			Aucun			
Calcaire fracturé S24 (0.60 - 1.00 0 Aucun		1000	0,6 m				0	,6 m					
			Calcaire fracturé				S24 (C		·	1			
	1	3434	1 m					1 m	1 m			1 m	

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

		itude (WGS84)	Latitud	 e (WGS84)	Elévation		Prof. att	einte	Niveau d'eau	
S25		5557400	43,402		Non renseic		1,2 m			mesuré 🛘 En cours de forage
5 25	1,370	,007 100	13,102	103 100	Tron renderg	,,,,,	.,2		☐ Stabilisé ☐ No	n stabilisé 🗆 Sec
Début			Fi				Machi			Opérateur
12/04/2			12	/04/2022 09:	15			diam. 9	90	TOUSSAINT Brice
		étéorologiques					Flacor			Préleveur
Couver	t						Bocau	X		Eliès ARIKA
Prof.	Lithologie		Desci	intion		Echai	ntillons	Mesure PID (pp	es m)	Indices organoleptiques
0	0 7 0 1							0 m		0 m
Ü		Couche de forme gra	veleuse				00 - 0.10 n)	0 111		Aucun
٠		0,1 m					1 m	0,1 m		0,1 m
100								0,1 m		0,1 m
		Sable graveleux marron					(0.10 - 0.50 m) 0			Aucun
7.5	10:10	0,5 m				0,!	5 m	0,5 n		0,5 m
		Sable graveleux marr	on avec mâ	chefer (Remblais)			50 - 0.80 n)	0,5 n		0,5 m Couleur noire, mâchefer
-7	10 10	0,8 m				0,8	3 m	0,8 n		0,8 m
1		Sable graveleux beigo Refus à 1.20 m sur roc				S25 (0.	80 - 1.20 n)	0,8 n		0,8 m Aucun
30	10 10 10 10	1,2 m				1,2	? m	1,2 m	1	1,2 m

fon	255

(N° Projet: PR.69EN.22.0018)

1	7 1									PORT DE BOUC	
	Long	itude (WGS84)	Latitude	(WGS84)	Elévation	I	Prof. att	einte	Niveau d'eau		
S26	26 4,976322600 43,402077500				Non renseig	né 1	I,0 m		☑ Néant □ Non ı □ Stabilisé □ No	mesuré 🏻 En cours de forage n stabilisé 🗖 Sec	
Début			Fin			· ·	Machi	ne '	Opérateur		
	2022 0	9:45	12/0	04/2022 10:0	00			diam. 9	0	TOUSSAINT Brice	\neg
Condit	ions m	étéorologiques	<u> </u>				Flacon	nage		Préleveur	\neg
Couve	rt						Bocau	×		Eliès ARIKA	
O Prof.	Lithologie	Couche de forme gra 0,3 m Sable graveleux marr				Echan S26 (0.0	tillons	Mesure PID (ppr O m	s n)	Indices organoleptiques 0 m 0 0,3 m Aucun	
		0,7 m Sable limono-gravele Refus sur roche à 1.00	-			0,7 S26 (0.7 n	70 - 1.00	0,7 m 0,7 m 0		0,7 m 0,7 m Aucun	
1		1 m				1	m	1 m		1 m	
1											

fc	ondas	
	Longitude (WGS84)	Latitud
S27	4,976697500	43,402

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

	Longi	tude (WGS84)	Lat	itude	(WGS84)	Elévation		Prof. att	einte	Niv	eau d'eau		
S27	4,976	697500	43,	40202	27900	Non renseig	ŋné	né 0,8 m			☑ Néant ☐ Non mesuré ☐ En cours de forage☐ Stabilisé ☐ Non stabilisé ☐ Sec		
Début Fin								Machine	•			Opérateur	
12/04/2				12/04	1/2022 11:40			Tarière d	diam. 90)		TOUSSAINT Brice	
		téorologiques						Flaconn	age			Préleveur	
Couver	t							Bocaux				Eliès ARIKA	
Prof.	Lithologie			Descrip	otion		Ech	antillons	Mesur PID (pp	es om)		Indices organoleptiques	
0	0 0 0								0 m			0 m	
0 0 0 0		O,3 m Limon gravelo-sable: Refus à 0.80 m sur re	ux mai		е		S27 (C	0.00 - 0.80 m)	0			Débris de verre	
	0 0 0 0 0 0	0,8 m					(),8 m	0,8 n	n		0,8 m	

		itude (WGS84)	Latitude (WGS84)	Elévation		Prof. att	einte	Nive	veau d'eau
S28		6086500	43,401980000	Non renseig		2,0 m	Ciric		
	1,570	.000000	13, 10130000	Tron renserg	,,,,,	2,0 111			Néant ☐ Non mesuré ☐ En cours de forage Stabilisé ☐ Non stabilisé ☐ Sec
Début			Fin			Machir	ie		Opérateur
	2022 10	0:00	12/04/2022 10:3	30			diam. 9	0	TOUSSAINT Brice
		étéorologiques				Flacon			Préleveur
Couve	rt				Bocaux				Eliès ARIKA
Prof.	Lithologie		Description		Echa	ntillons	Mesur PID (pp	es ım)	Indices organoleptiques
0		Limon gravelo-sablet				.00 - 0.70 m)	0 m		O m
=									
	-00	0,7 m			0	,7 m	0,7 m 0,7 m		0,7 m 0,7 m
		Limon gravelo-sableu	ux beige à brun			.70 - 1.00 m)	0		Aucun
1		1 m				l m	1 m	\rightarrow	1 m
		Limon gravelo-sableu	ux beige		S28 (1.	00 - 2.00 m)	1 m		1 m
	_0_0	2 m				2 m	2 m		2 m
2									
Les pa	ramètre	es analysés sont ir	ndiqués dans le rappo	rt					
www.s	oilcloud	l.fr							

fon	das	ŞL
1	-I- (MCCOA)	1 - 424

		tude (WGS84)	Latitude (WGS84)	Elévation	F	Prof. att	einte	Nive	veau d'eau
S29		334400	43,401947400	Non renseigr		,55 m		☑ ١	Néant ☐ Non mesuré ☐ En cours de forage
									Stabilisé ☐ Non stabilisé ☐ Sec
Début			Fin			Machi			Opérateur
12/04/2		etéorologiques	12/04/2022 09:	45	Tarière diam. 90 Flaconnage			90	TOUSSAINT Brice Préleveur
Couver		eteorologiques			Bocaux				Eliès ARIKA
	Lithologie					Восис	Mesure	200	LIES ANIVA
Prof.	∄		Description		Echan	tillons	PID (pp	im)	Indices organoleptiques
6 6 6 6 6 6 6		Argile gravelo-sableu	se marron		S29 (0.0 m	O - 1.00)	0 m		O m Odeur de brulé
1 0	° ° ° °	1 m			<u>1 r</u>	m	1 m 1 m		1 m 1 m
0 0 0 0 0		Argile gravelo-sableu Refus à 1.55 m sur blo			S29 (1.0 m	0 - 1.55)	0		Enrobé
O.	0 0								
0	0 0	1,55 m			1,55	m	1,55 n	n	1,55 m
Les par	amètre	s analysés sont in	ndiqués dans le rappor	t				_	
www.sc	ilcloud	l.fr							

fon	da	Sąl

	Longi	itude (WGS84)	Latitude (WGS84)	Elévation		Prof. att	einte		veau d'eau		
S30	4,976	6684900	43,401898200	Non renseig	né	2,0 m			Néant ☐ Non r Stabilisé ☐ No	mesuré 🔲 Er n stabilisé 🔲	n cours de forage Sec
Début			Fin			Machine				Opérateur	
12/04/2			12/04/2022 11:25			Tarière d				TOUSSAINT I	Brice
		étéorologiques				Flaconna	age			Préleveur	
Couvert	: ,					Bocaux				Eliès ARIKA	
	Lithologie										
O Prof.	Liŧ		Description		Ech	antillons	Mesure PID (pp	es m)		Indices organ	
		Couche de forme gra	velo-sableuse beige			0.00 - 0.40 m)	0 m			O m	n
	NEW Y	0,4 m			(D,4 m	0,4 m			0,4 r	
		Sable graveleux beigi	e		\$30 (i	0.40 - 1.00 m)	0,4 m	1		0,4 r Aucu	
39	10710	1 m				1 m	1 m			1 m	
		Sable graveleux beig	ē		\$30 (1.00 - 2.00 m)	1 m			1 m	n
2		2 m				2 m	2 m			2 m	
Les para	amètre	es analysés sont in	diqués dans le rappor	t							
www.so	ilcloud	l.fr									

ANNEXE 7: BORDEREAUX D'ANALYSES DES ESSAIS DE LABORATOIRE SUR LES SOLS ET LES TERRES A EXCAVER

Cette annexe contient 58 pages

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

FONDASOL Environnement (69) Adresse agence 106 avenue Franklin Roosevelt 69120 VAULX-EN-VELIN FRANCE

 Date
 28.04.2022

 N° Client
 35008582

 N° commande
 1148140

RAPPORT D'ANALYSES

n° Cde 1148140 Solide / Eluat

Client 35008582 FONDASOL Environnement (69)

Référence PR.69EN.22.0018 - Pièce n°001 - BDC PO.69EN.22.0109

Date de validation 19.04.22 Prélèvement par: Client

Madame, Monsieur

paramètres non accrédités et/ou externalisés sont marqués

Seuls les

Les paramètres réalisés par AL-West BV sont accrédités selon la norme

Nous avons le plaisir de vous adresser ci-joint le rapport définitif des analyses chimiques provenant du laboratoire pour votre dossier en référence.

Nous signalons que le certificat d'analyses ne pourra être reproduit que dans sa totalité. Les annexes éventuelles font partie du rapport.

Nous vous informons que seules les conditions générales de AL-West, déposées à la Chambre du Commerce et de l'Industrie de Deventer, sont en vigueur.

Au cas où vous souhaiteriez recevoir des renseignements complémentaires, nous vous prions de prendre contact avec le service après-vente.

En vous remerciant pour la confiance que vous nous témoignez, nous vous prions d'agréer, Madame, Monsieur l'expression de nos sincères salutations.

Respectueusement,

AL-West B.V. Mme Delphine Colin, Tel. +33/380681935 Chargée relation clientèle

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148140 Solide / Eluat

<u>e</u>	N° échant.	Prélèvement	Nom d'échantillon
mpc J	N° échant. 269001 269003 269004 269005 269006	12.04.2022	S21 (0,0-0,2 m)
u sy	269003	12.04.2022	S21 (0,2-0,7 m)
és d	269004	12.04.2022	S21 (0,7-0,9 m)
rdue	269005	12.04.2022	S21 (0,9-2,0 m)
t ma	269006	12.04.2022	S22 (0,0-0,2 m)
υţ			

N° échant.	Prélèvement	Nom a	l'échantillon				
269001	12.04.2022	S21 (0	,0-0,2 m)				
269003	12.04.2022	S21 (0	,2-0,7 m)				
269004	12.04.2022	S21 (0	,7-0,9 m)				
269005	12.04.2022	S21 (0	,9-2,0 m)				
269006	12.04.2022	S22 (0	,0-0,2 m)				
		Unité	269001 S21 (0,0-0,2 m)	269003 S21 (0,2-0,7 m)	269004 S21 (0,7-0,9 m)	269005 S21 (0,9-2,0 m)	2690 S22 (0,0-0,2
Lixiviation							
Fraction >4	mm (EN12457-2)	%	60,7				37,8
Masse brute	Mh pour lixiviation	g	92 *)				90
Lixiviation (EN 12457-2)		++				++
Volume de liz l'extraction	xiviant L ajouté pour	ml	900 *)				900
	ent des échantillons						
	ntillon total inférieure à 2	kg kg	0,67				0,72
	t de l'échantillon		++	++	++	++	++
Broyeur à n				++			++
Tamisage à				++	++	++	
Matière sèc		%	98,9	96,0	85,1	93,2	99,0
	Fractions solubles		0 4000 *)				0 4000
	ible cumulé (var. L/S)	mg/kg Ms	0 - 1000				0 - 1000
	cumulé (var. L/S)	mg/kg Ms	0 - 0,05				0 - 0,05
	nulé (var. L/S)	mg/kg Ms	0 - 0,05				0 - 0,05
-	mulé (var. L/S)	mg/kg Ms	U - U, I				0 - 0,1
	cumulé (var. L/S)	mg/kg Ms	0 - 0,001				0 - 0,001
	mulé (var. L/S)	mg/kg Ms	49				37
	mulé (var. L/S)	mg/kg Ms	0 - 0,02				0 - 0,02
COT cumul	<u> </u>	mg/kg Ms					0 - 10
	ulé (var. L/S)	mg/kg Ms	0,05				0,03
	umulé (var. L/S)	mg/kg Ms	1,0				1,0
	ol cumulé (var. L/S)	mg/kg Ms	0 - 0,1				0 - 0,1
	mulé (var. L/S)	mg/kg Ms	0 - 0,0003				0 - 0,0003
-	cumulé (var. L/S)	mg/kg Ms	0 - 0,05				0 - 0,05
	ulé (var. L/S)	mg/kg Ms	0 - 0,05				0 - 0,05
	ulé (var. L/S)	mg/kg Ms	0 - 0,05				0 - 0,05
	umulé (var. L/S)	mg/kg Ms	0 - 0,05				0 - 0,05
	mulé (var. L/S)	mg/kg Ms	90				230
Zinc cumule	<u> </u>	mg/kg Ms	0 - 0,02				0 - 0,02
	Physico-chimiques						
			8,6				8,3
pH-H2O	ne Organique Total	mg/kg Ms	3000				5500

e-Mail: info@al-west.nl, www.al-west.nl

l° échant.	Prélèvement	Nom d'échantillon	
269007	12.04.2022	S22 (0,2-0,6 m)	
269008	12.04.2022	S22 (0,6-1,0 m)	
269009	12.04.2022	S23 (0,0-0,3 m)	
269010	12.04.2022	S23 (0,3-0,5 m)	
269011	12.04.2022	S23 (0,5-1,0 m)	

et/ou externalisés		Unité	269007 S22 (0,2-0,6 m)	269008 S22 (0,6-1,0 m)	269009 S23 (0,0-0,3 m)	269010 \$23 (0,3-0,5 m)	26901 1 S23 (0,5-1,0 m)
u ext	Lixiviation						
	Fraction >4mm (EN12457-2)	%			46,7		
ités	Masse brute Mh pour lixiviation	g			91 *)		
réd	Lixiviation (EN 12457-2)				++		
paramètres non accrédités	Volume de lixiviant L ajouté pour l'extraction	ml			900 *)		
SS D	Prétraitement des échantillons						
hètre	Masse échantillon total inférieure à 2 kg	ı kg			0,52		
aran	Prétraitement de l'échantillon		++	++	++	++	++
se pe	Broyeur à mâchoires		++		++	++	
Seuls les	Tamisage à 2 mm		++	++		++	++
Sec	Matière sèche	%	83,5	93,0	99,0	90,0	96,0
17.	Calcul des Fractions solubles						
EN ISO/IEC 17025:2017	Fraction soluble cumulé (var. L/S)	mg/kg Ms			0 - 1000 ["]		
702	Antimoine cumulé (var. L/S)	mg/kg Ms			0 - 0,05		
<u>С</u>	Arsenic cumulé (var. L/S)	mg/kg Ms			0 - 0,05		
0	Baryum cumulé (var. L/S)	mg/kg Ms			0 - 0,1		
2	Cadmium cumulé (var. L/S)	mg/kg Ms			0 - 0,001 ^{*)}		
e E	Chlorures cumulé (var. L/S)	mg/kg Ms			37 *)		
orm	Chrome cumulé (var. L/S)	mg/kg Ms			0 - 0,02		
<u>а</u>	COT cumulé (var. L/S)	mg/kg Ms			18 ^{*)}		
elon	Cuivre cumulé (var. L/S)	mg/kg Ms			0,03 *)		
S S	Fluorures cumulé (var. L/S)	mg/kg Ms			1,0 ^{*)}		
édité	Indice phénol cumulé (var. L/S)	mg/kg Ms			0 - 0,1		
SCCF	Mercure cumulé (var. L/S)	mg/kg Ms			0 - 0,0003		
AL-West BV sont accrédités selon la norme	Molybdène cumulé (var. L/S)	mg/kg Ms			0 - 0,05		
) S >:	Nickel cumulé (var. L/S)	mg/kg Ms			0 - 0,05		
st B	Plomb cumulé (var. L/S)	mg/kg Ms			0 - 0,05		
Ϋ́	Sélénium cumulé (var. L/S)	mg/kg Ms			0 - 0,05		
	Sulfates cumulé (var. L/S)	mg/kg Ms			75 ^{*)}		
s pa	Zinc cumulé (var. L/S)	mg/kg Ms			0,02 *)		
ılisé	Analyses Physico-chimiques						
Les paramètres réalisés par	pH-H2O				8,6		
tres	COT Carbone Organique Total	mg/kg Ms			1900		

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

√° échant.	Prélèvement	Nom d'échantillon	
269012	12.04.2022	S23 (1,0-1,5 m)	
269013	12.04.2022	S24 (0,0-0,1 m)	
269014	12.04.2022	S24 (0,1-0,3 m)	
269015	12.04.2022	S24 (0,3-0,6 m)	
269016	12.04.2022	S24 (0,6-1,0 m)	

	Unité	269012 S23 (1,0-1,5 m)	269013 S24 (0,0-0,1 m)	269014 S24 (0,1-0,3 m)	269015 S24 (0,3-0,6 m)	26901 S24 (0,6-1,0 r
Lixiviation						
Fraction >4mm (EN12457-2)	%		31,6			
Masse brute Mh pour lixiviation	g		92 "			
Lixiviation (EN 12457-2)			++			
Volume de lixiviant L ajouté pour l'extraction	ml		900 *)			
Prétraitement des échantillons	3					
Masse échantillon total inférieure à 2	kg kg		0,67			
Prétraitement de l'échantillon		++	++	++	++	++
Broyeur à mâchoires		++	++	++		++
Tamisage à 2 mm		++		++	++	++
Matière sèche	%	92,5	98,4	88,8	82,7	96,0
Calcul des Fractions solubles						
Fraction soluble cumulé (var. L/S)	mg/kg Ms		1300 ["]			
Antimoine cumulé (var. L/S)	mg/kg Ms		0 - 0,05 ^{*)}			
Arsenic cumulé (var. L/S)	mg/kg Ms		0 - 0,05 *)			
Baryum cumulé (var. L/S)	mg/kg Ms		0,16 *)			
Cadmium cumulé (var. L/S)	mg/kg Ms		0 - 0,001 ^{*)}			
Chlorures cumulé (var. L/S)	mg/kg Ms		64 ^{*)}			
Chrome cumulé (var. L/S)	mg/kg Ms		0 - 0,02 ^{*)}			
COT cumulé (var. L/S)	mg/kg Ms		13 ^{")}			
Cuivre cumulé (var. L/S)	mg/kg Ms		0,03 "			
Fluorures cumulé (var. L/S)	mg/kg Ms		2,0			
Indice phénol cumulé (var. L/S)	mg/kg Ms		0 - 0,1			
Mercure cumulé (var. L/S)	mg/kg Ms		0 - 0,0003 *)			
Molybdène cumulé (var. L/S)	mg/kg Ms		0 - 0,05			
Nickel cumulé (var. L/S)	mg/kg Ms		0 - 0,05 ^{*)}			
Plomb cumulé (var. L/S)	mg/kg Ms		0 - 0,05 *)			
Sélénium cumulé (var. L/S)	mg/kg Ms		0,65			
Sulfates cumulé (var. L/S)	mg/kg Ms		430 ^{*)}			
Zinc cumulé (var. L/S)	mg/kg Ms		0 - 0,02 ^{*)}			
Analyses Physico-chimiques						
pH-H2O			8,2			
COT Carbone Organique Total	mg/kg Ms		2200			

s Lea	pH-H2O		 8,2	 	
ĕ	COT Carbone Organique Total	ma/ka Ms	 2200	 	

TESTING RVA L 005

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148140 Solide / Eluat

Prélèvement	Nom d'échantillon
12.04.2022	S25 (0,1-0,5 m)
12.04.2022	S25 (0,5-0,8 m)
12.04.2022	S25 (0,8-1,2 m)
12.04.2022	S26 (0,3-0,7 m)
12.04.2022	S26 (0,7-1,0 m)
	12.04.2022 12.04.2022 12.04.2022 12.04.2022

N° échant.	Prélèvement	Nom d	l'échantillon				
269017	12.04.2022	S25 (0	,1-0,5 m)				
269018	12.04.2022	S25 (0	,5-0,8 m)				
269019	12.04.2022	S25 (0	,8-1,2 m)				
269020	12.04.2022	S26 (0	,3-0,7 m)				
269021	12.04.2022	S26 (0	,7-1,0 m)				
		Unité	269017 S25 (0,1-0,5 m)	269018 S25 (0,5-0,8 m)	269019 S25 (0,8-1,2 m)	269020 S26 (0,3-0,7 m)	2690 2 \$26 (0,7-1,0
Lixiviation							
	1mm (EN12457-2)	%	40,5			23,2	
	Mh pour lixiviation	g	100 *)			100 *)	
	(EN 12457-2)		++			++	
Volume de li l'extraction	ixiviant L ajouté pour	ml	900 '			900 ^{*)}	
	nent des échantillons						
Masse écha	ntillon total inférieure à 2	kg kg	0,65			0,69	
Prétraitemer	nt de l'échantillon		++	++	++	++	++
Broyeur à i	mâchoires		++	++	++	++	
Tamisage	à 2 mm			++	++		++
Matière sè	che	%	87,7	87,5	96,1	90,5	91,6
Calcul des	Fractions solubles						
Fraction solu	uble cumulé (var. L/S)	mg/kg Ms	26000 *)			7300 *)	
Antimoine	cumulé (var. L/S)	mg/kg Ms	0 - 0,05			0 - 0,05	
Arsenic cui	mulé (var. L/S)	mg/kg Ms	0 - 0,05			0,32	
Baryum cu	mulé (var. L/S)	mg/kg Ms	0,10			0,31	
Cadmium o	cumulé (var. L/S)	mg/kg Ms	0,028			0 - 0,001	
Chlorures cu	umulé (var. L/S)	mg/kg Ms	12 *)			190 ^{*)}	
Chrome cu	ımulé (var. L/S)	mg/kg Ms	0 - 0,02			0,11	
COT cumu	ılé (var. L/S)	mg/kg Ms	0 - 10 ^{*)}			39 *	
Cuivre cum	nulé (var. L/S)	mg/kg Ms	0,32			0,47 *)	
Fluorures o	cumulé (var. L/S)	mg/kg Ms	15 ^{*)}			2,0 *)	
Indice phén	ol cumulé (var. L/S)	mg/kg Ms	0 - 0,1 ^{*)}			0 - 0,1 ^{*)}	
Mercure cu	umulé (var. L/S)	mg/kg Ms	0,0027 *)			0,0007	
Molybdène	e cumulé (var. L/S)	mg/kg Ms	0 - 0,05 ^{*)}			0,07	
Nickel cum	nulé (var. L/S)	mg/kg Ms	0 - 0,05 ^{*)}			0 - 0,05 ^{*)}	
Plomb cum	nulé (var. L/S)	mg/kg Ms	0 - 0,05 ^{*)}			0 - 0,05 ^{*)}	
Sélénium c	cumulé (var. L/S)	mg/kg Ms	0,09 *)			0,09	
Sulfates cu	ımulé (var. L/S)	mg/kg Ms	13000 "			2700 '	
	lé (var. L/S)	mg/kg Ms	16 ^{*)}			0 - 0,02	
	Physico-chimiques						
pH-H2O			7,5			10,7	
•	one Organique Total	mg/kg Ms	13000			5300	

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148140 Solide / Eluat

V° échant.	Prélèvement	Nom d'échantillon	
269022	12.04.2022	S27 (0,3-0,9 m)	
269023	12.04.2022	S28 (0,0-0,7 m)	
269024	12.04.2022	S28 (0,7-1,0 m)	
269025	12.04.2022	S28 (1,0-2,0 m)	
269026	12.04.2022	S29 (0,00-1,00 m)	

	Unité	269022 S27 (0,3-0,9 m)	269023 \$28 (0,0-0,7 m)	269024 S28 (0,7-1,0 m)	269025 S28 (1,0-2,0 m)	26902 S29 (0,00-1,00 l
Lixiviation						
Fraction >4mm (EN12457-2)	%	43,7				
Masse brute Mh pour lixiviation	g	97 *)				
Lixiviation (EN 12457-2)		++				
Volume de lixiviant L ajouté pour l'extraction	ml	900 *)				
Prétraitement des échantillons	i					
Masse échantillon total inférieure à 2	kg kg	0,65				
Prétraitement de l'échantillon		++	++	++	++	++
Broyeur à mâchoires		++	++	++	++	++
Tamisage à 2 mm			++	++	++	++
Matière sèche	%	93,7	93,1	96,4	95,4	88,9
Calcul des Fractions solubles						
Fraction soluble cumulé (var. L/S)	mg/kg Ms	1300 ^{*)}				
Antimoine cumulé (var. L/S)	mg/kg Ms	0,05 *)				
Arsenic cumulé (var. L/S)	mg/kg Ms	0,31 *)				
Baryum cumulé (var. L/S)	mg/kg Ms	0,11 *)				
Cadmium cumulé (var. L/S)	mg/kg Ms	0 - 0,001				
Chlorures cumulé (var. L/S)	mg/kg Ms	23 *)				
Chrome cumulé (var. L/S)	mg/kg Ms	0 - 0,02				
COT cumulé (var. L/S)	mg/kg Ms	15 ^{*)}				
Cuivre cumulé (var. L/S)	mg/kg Ms	0,10 ^{*)}				
Fluorures cumulé (var. L/S)	mg/kg Ms	5,0 *)				
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,1				
Mercure cumulé (var. L/S)	mg/kg Ms	0,0007				
Molybdène cumulé (var. L/S)	mg/kg Ms	0,06				
Nickel cumulé (var. L/S)	mg/kg Ms	0 - 0,05				
Plomb cumulé (var. L/S)	mg/kg Ms	0 - 0,05				
Sélénium cumulé (var. L/S)	mg/kg Ms	0 - 0,05				
Sulfates cumulé (var. L/S)	mg/kg Ms	470 "				
Zinc cumulé (var. L/S)	mg/kg Ms	0,03				
Analyses Physico-chimiques	<u> </u>	·				
pH-H2O		8,6				
COT Carbone Organique Total	mg/kg Ms	19000				

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148140 Solide / Eluat

2	N° échant.	Prélèvement	Nom d'échantillon
2	269027	12.04.2022	S29 (1,00-1,55 m)
,	269028	12.04.2022	S30 (0,0-0,4 m)
	269029	12.04.2022	S30 (0,4-1,0 m)
5	269030	12.04.2022	S30 (1,0-2,0 m)
2			

N° échant.	Prélèvement	Nom o	d'échantillon			
269027	12.04.2022	S29 (1	1,00-1,55 m)			
269028	12.04.2022	S30 (0	0,0-0,4 m)			
269029	12.04.2022	S30 (0	0,4-1,0 m)			
269030	12.04.2022	S30 (1	1,0-2,0 m)			
		Unité	269027 S29 (1,00-1,55 m)	269028 S30 (0,0-0,4 m)	269029 \$30 (0,4-1,0 m)	2690 3 S30 (1,0-2,0
Lixiviation	(=)					
	mm (EN12457-2)	%		61,4		
	Mh pour lixiviation	g		92		
	EN 12457-2)			++		
Volume de li l'extraction	xiviant L ajouté pour	ml		900		
	ent des échantillons					
Masse échai	ntillon total inférieure à 2 kg	kg		0,77		
Prétraitemen	t de l'échantillon		++	++	++	++
Broyeur à r	nâchoires		++	++		
Tamisage à	a 2 mm		++		++	++
Matière sè	che	%	87,7	98,3	95,6	97,0
Calcul des	Fractions solubles					
Fraction solu	ble cumulé (var. L/S)	mg/kg Ms		0 - 1000 ^{*)}		
Antimoine o	cumulé (var. L/S)	mg/kg Ms		0 - 0,05		
Arsenic cur	nulé (var. L/S)	mg/kg Ms		0 - 0,05		
Baryum cur	nulé (var. L/S)	mg/kg Ms		0 - 0,1		
Cadmium c	umulé (var. L/S)	mg/kg Ms		0 - 0,001		
Chlorures cu	mulé (var. L/S)	mg/kg Ms		30 '		
Chrome cu	mulé (var. L/S)	mg/kg Ms		0 - 0,02		
COT cumul	é (var. L/S)	mg/kg Ms		0 - 10 ^{*)}		
Cuivre cum	ulé (var. L/S)	mg/kg Ms		0,02		
Fluorures c	umulé (var. L/S)	mg/kg Ms		1,0 ^{*)}		
Indice phén	ol cumulé (var. L/S)	mg/kg Ms		0 - 0,1 ^{*)}		
Mercure cu	mulé (var. L/S)	mg/kg Ms		0 - 0,0003		
Molybdène	cumulé (var. L/S)	mg/kg Ms		0 - 0,05 ^{*)}		
Nickel cum	ulé (var. L/S)	mg/kg Ms		0 - 0,05 ^{*)}		
Plomb cum	ulé (var. L/S)	mg/kg Ms		0 - 0,05		
	umulé (var. L/S)	mg/kg Ms		0 - 0,05		
	mulé (var. L/S)	mg/kg Ms		100 "		
Zinc cumul	<u> </u>	mg/kg Ms		0 - 0,02		
	Physico-chimiques					
Analyses I				8,7		
Analyses I pH-H2O						

DOC-13-18307524-FR-P7

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

	Unité	269001 S21 (0,0-0,2 m)	269003 S21 (0,2-0,7 m)	269004 S21 (0,7-0,9 m)	269005 S21 (0,9-2,0 m)	269006 S22 (0,0-0,2 m)
Prétraitement pour analyses des	métaux					
Minéralisation à l'eau régale		++	++	++	++	++
V létaux						
Antimoine (Sb)	mg/kg Ms	<0,5				<0,5
Arsenic (As)	mg/kg Ms	1,6	23	8,2	3,2	1,5
Baryum (Ba)	mg/kg Ms	6,6				5,9
Cadmium (Cd)	mg/kg Ms	0,1	0,2	0,2	0,2	0,1
Chrome (Cr)	mg/kg Ms	5,5	9,5	25	13	3,5
Cuivre (Cu)	mg/kg Ms	3,9	27	19	6,6	1,2
Mercure (Hg)	mg/kg Ms	<0,05	0,76	0,28	0,06	0,06
Molybdène (Mo)	mg/kg Ms	<1,0				<1,0
Nickel (Ni)	mg/kg Ms	4,0	7,7	16	3,3	1,9
Plomb (Pb)	mg/kg Ms	5,0	62	36	4,3	5,0
Sélénium (Se)	mg/kg Ms	<1,0				<1,0
Zinc (Zn)	mg/kg Ms	11	44	48	61	6,3
Hydrocarbures Aromatiques Polycyc	liques (ISO)					
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Phénanthrène	mg/kg Ms	<0,050	0,52	<0,050	<0,050	<0,050
Anthracène	mg/kg Ms	<0,050	0,21	<0,050	<0,050	<0,050
Fluoranthène	mg/kg Ms	<0,050	1,1	<0,050	<0,050	<0,050
	mg/kg Ms	<0,050	0,80	<0,050	<0,050	<0,050
Benzo(a)anthracène	mg/kg Ms	<0,050	0,29	<0,050	<0,050	<0,050
Chrysène	mg/kg Ms	<0,050	0,25	<0,050	<0,050	<0,050
Benzo(b)fluoranthène	mg/kg Ms	<0,050	0,14	<0,050	<0,050	<0,050
Benzo(k)fluoranthène	mg/kg Ms	<0,050	0,073	<0,050	<0,050	<0,050
Benzo(a)pyrène	mg/kg Ms	<0,050	0,10	<0,050	<0,050	<0,050
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	0,064	<0,050	<0,050	<0,050
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	0,073	<0,050	<0,050	<0,050
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	1,55	n.d.	n.d.	n.d.
Somme HAP (VROM)	mg/kg Ms	n.d.	2,68 ^{x)}	n.d.	n.d.	n.d.
HAP (EPA) - somme	mg/kg Ms	n.d.	3,62 x)	n.d.	n.d.	n.d.
Composés aromatiques	9,119		-,			
Benzène	mg/kg Ms	<0,050	<0,05	<0,05	<0,05	<0,050
Toluène	mg/kg Ms	<0,050	<0,05	<0,05	<0,05	<0,050
Ethylbenzène	mg/kg Ms	<0,050	<0,05	<0,05	<0,05	<0,050
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050

TESTING RVA L 005

page 8 de 29

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

	Unité	269007 S22 (0,2-0,6 m)	269008 S22 (0,6-1,0 m)	269009 S23 (0,0-0,3 m)	269010 S23 (0,3-0,5 m)	26901 ′ S23 (0,5-1,0 m
Prétraitement pour analyses des	s métaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms			<0,5		
Arsenic (As)	mg/kg Ms	2500	330	3,2	470	15
Baryum (Ba)	mg/kg Ms			13		
Cadmium (Cd)	mg/kg Ms	7,3	1,0	0,2	1,2	0,2
Chrome (Cr)	mg/kg Ms	8,3	7,9	9,4	14	14
Cuivre (Cu)	mg/kg Ms	460	100	6,8	440	20
Mercure (Hg)	mg/kg Ms	3200	282	<0,05	32,4	0,36
Molybdène (Mo)	mg/kg Ms			<1,0		
Nickel (Ni)	mg/kg Ms	4,1	2,5	8,6	8,5	2,3
Plomb (Pb)	mg/kg Ms	47000	9000	5,8	2500	36
Sélénium (Se)	mg/kg Ms			<1,0		
Zinc (Zn)	mg/kg Ms	220	140	19	310	20
Hydrocarbures Aromatiques Polycyc	liques (ISO)					
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Phénanthrène	mg/kg Ms	0,22	<0,050	<0,050	0,16	<0,050
Anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluoranthène	mg/kg Ms	0,43	0,072	<0,050	0,41	<0,050
Pyrène	mg/kg Ms	0,38	0,066	<0,050	0,32	<0,050
Benzo(a)anthracène	mg/kg Ms	0,16	<0,050	<0,050	0,17	<0,050
Chrysène	mg/kg Ms	0,18	<0,050	<0,050	0,23	<0,050
Benzo(b)fluoranthène	mg/kg Ms	0,19	<0,050	<0,050	0,26	<0,050
Benzo(k)fluoranthène	mg/kg Ms	0,093	<0,050	<0,050	0,10	<0,050
Benzo(a)pyrène	mg/kg Ms	0,17	<0,050	<0,050	0,12	<0,050
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Benzo(g,h,i)pérylène	mg/kg Ms	0,14	<0,050	<0,050	0,13	<0,050
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,13	<0,050	<0,050	0,17	<0,050
HAP (6 Borneff) - somme	mg/kg Ms	1,15	0,0720 ^{x)}	n.d.	1,19	n.d.
Somme HAP (VROM)	mg/kg Ms	1,52 ^{x)}	0,0720 ^{x)}	n.d.	1,49 ×)	n.d.
HAP (EPA) - somme	mg/kg Ms	2,09 ^{x)}	0,138 ^{x)}	n.d.	2,07 ×)	n.d.
Composés aromatiques		·	-			
Benzène	mg/kg Ms	<0,05	<0,05	<0,050	<0,05	<0,05
Toluène	mg/kg Ms	<0,05	<0,05	<0,050	<0,05	<0,05
Ethylbenzène	mg/kg Ms	<0,05	<0,05	<0,050	<0,05	<0,05
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050

TESTING RVA L 005

page 9 de 29

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

	Unité	269012 S23 (1,0-1,5 m)	269013 S24 (0,0-0,1 m)	269014 S24 (0,1-0,3 m)	269015 S24 (0,3-0,6 m)	269016 S24 (0,6-1,0 m)
Prétraitement pour analyses des	métaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms		<0,5			
Arsenic (As)	mg/kg Ms	29	2,7	1200	740	4,7
Baryum (Ba)	mg/kg Ms		14			
Cadmium (Cd)	mg/kg Ms	0,2	0,1	1,8	3,0	0,2
Chrome (Cr)	mg/kg Ms	9,9	7,9	11	7,5	11
Cuivre (Cu)	mg/kg Ms	32	5,8	590	710	15
Mercure (Hg)	mg/kg Ms	0,84	<0,05	103	140	0,23
Molybdène (Mo)	mg/kg Ms		<1,0			
Nickel (Ni)	mg/kg Ms	2,3	7,1	8,8	8,3	2,2
Plomb (Pb)	mg/kg Ms	99	4,3	5000	3500	16
Sélénium (Se)	mg/kg Ms		<1,0			
Zinc (Zn)	mg/kg Ms	24	15	570	620	26
Hydrocarbures Aromatiques Polycyc	liques (ISO)					
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	0,37	<0,050
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	0,060	0,088	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	0,20	0,19	<0,050
Phénanthrène	mg/kg Ms	<0,050	<0,050	3,4	3,5	<0,050
Anthracène	mg/kg Ms	<0,050	<0,050	0,72	0,42	<0,050
Fluoranthène	mg/kg Ms	<0,050	<0,050	4,5	7,1	<0,050
Pyrène	mg/kg Ms	<0,050	<0,050	3,9	5,0	<0,050
Benzo(a)anthracène	mg/kg Ms	<0,050	<0,050	1,9	2,8	<0,050
Chrysène	mg/kg Ms	<0,050	<0,050	1,9	4,0	<0,050
Benzo(b)fluoranthène	mg/kg Ms	<0,050	<0,050	1,9	3,1	<0,050
Benzo(k)fluoranthène	mg/kg Ms	<0,050	<0,050	0,92	1,7	<0,050
Benzo(a)pyrène	mg/kg Ms	<0,050	<0,050	1,9	2,9	<0,050
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	0,25	0,27	<0,050
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	<0,050	1,4	2,2	<0,050
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	<0,050	1,4	2,5	<0,050
HAP (6 Borneff) - somme	mg/kg Ms	n.d.	n.d.	12,0	19,5	n.d.
Somme HAP (VROM)	mg/kg Ms	n.d.	n.d.	18,0 ^{x)}	27,5	n.d.
HAP (EPA) - somme	mg/kg Ms	n.d.	n.d.	24,4 ^{x)}	36,1 ^{x)}	n.d.
Composés aromatiques	-					
Benzène	mg/kg Ms	<0,05	<0,050	<0,05	<0,05	<0,05
Toluène	mg/kg Ms	<0,05	<0,050	<0,05	<0,05	<0,05
Ethylbenzène	mg/kg Ms	<0,05	<0,050	<0,05	<0,05	<0,05
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050

ESTING RVA L 005

page 10 de 29

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

	Unité	269017 \$25 (0,1-0,5 m)	269018 S25 (0,5-0,8 m)	269019 S25 (0,8-1,2 m)	269020 S26 (0,3-0,7 m)	269021 S26 (0,7-1,0 m)
Prétraitement pour analyses des	métaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms	62			1,5	
Arsenic (As)	mg/kg Ms	3000	4100	57	100	36
Baryum (Ba)	mg/kg Ms	51			42	
Cadmium (Cd)	mg/kg Ms	15	3,3	0,5	0,5	0,1
Chrome (Cr)	mg/kg Ms	11	16	16	14	6,7
Cuivre (Cu)	mg/kg Ms	4900	1200	52	130	34
Mercure (Hg)	mg/kg Ms	0,48	0,26	<0,05	5,07	2,55
Molybdène (Mo)	mg/kg Ms	1,3			<1,0	
Nickel (Ni)	mg/kg Ms	12	12	2,8	9,2	3,6
Plomb (Pb)	mg/kg Ms	120	61	3,8	180	63
Sélénium (Se)	mg/kg Ms	5,7			3,4	
Zinc (Zn)	mg/kg Ms	5000	1200	130	150	44
Hydrocarbures Aromatiques Polycyc	liques (ISO)					
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Phénanthrène	mg/kg Ms	0,46	0,15	<0,050	0,63	0,12
Anthracène	mg/kg Ms	0,087	<0,050	<0,050	0,13	<0,050
Fluoranthène	mg/kg Ms	0,57	0,19	<0,050	0,83	0,17
Pyrène	mg/kg Ms	0,50	0,10	<0,050	0,67	0,13
Benzo(a)anthracène	mg/kg Ms	0,22	<0,050	<0,050	0,36	0,082
Chrysène	mg/kg Ms	0,22	<0,050	<0,050	0,35	0,076
Benzo(b)fluoranthène	mg/kg Ms	0,19	<0,050	<0,050	0,35	0,076
Benzo(k)fluoranthène	mg/kg Ms	0,095	<0,050	<0,050	0,17	<0,050
Benzo(a)pyrène	mg/kg Ms	0,18	<0,050	<0,050	0,33	0,076
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	0,060	<0,050
Benzo(g,h,i)pérylène	mg/kg Ms	0,14	<0,050	<0,050	0,19	0,073
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,17	<0,050	<0,050	0,27	0,059
HAP (6 Borneff) - somme	mg/kg Ms	1,35	0,190 ^{x)}	n.d.	2,14	0,454
Somme HAP (VROM)	mg/kg Ms	2,14 ×)	0,340 ^{x)}	n.d.	3,26 x)	0,656
HAP (EPA) - somme	mg/kg Ms	2,83 ^{x)}	0,440 ×)	n.d.	4,34 ×)	0,862
Composés aromatiques	9,1.9 1410	_,~~	-,		-,	-,
Benzène	mg/kg Ms	<0,050	<0,05	<0,05	<0,050	<0,05
Toluène	mg/kg Ms	<0,050	<0,05	<0,05	<0,050	<0,05
Ethylbenzène	mg/kg Ms	<0,050	<0,05	<0,05	<0,050	<0,05
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
,	9,119 1110	70,10	70,10	70,10	70,10	70,10

ESTING RVA L 005

page 11 de 29

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

	Unité	269022 S27 (0,3-0,9 m)	269023 S28 (0,0-0,7 m)	269024 S28 (0,7-1,0 m)	269025 S28 (1,0-2,0 m)	269026 S29 (0,00-1,00 m)
Prétraitement pour analyses des	s métaux					
Minéralisation à l'eau régale		++	++	++	++	++
Métaux						
Antimoine (Sb)	mg/kg Ms	1,8				
Arsenic (As)	mg/kg Ms	32	100	26	3,9	6,0
Baryum (Ba)	mg/kg Ms	39				
Cadmium (Cd)	mg/kg Ms	0,3	1,1	0,5	0,2	<0,1
Chrome (Cr)	mg/kg Ms	14	22	22	17	18
Cuivre (Cu)	mg/kg Ms	37	200	48	4,7	10
Mercure (Hg)	mg/kg Ms	0,75	2,00	0,69	<0,05	0,09
Molybdène (Mo)	mg/kg Ms	<1,0				
Nickel (Ni)	mg/kg Ms	8,6	9,4	4,5	3,4	14
Plomb (Pb)	mg/kg Ms	100	250	54	6,5	14
Sélénium (Se)	mg/kg Ms	<1,0				
Zinc (Zn)	mg/kg Ms	61	320	110	24	28
Hydrocarbures Aromatiques Polycyc	liques (ISO)					
Naphtalène	mg/kg Ms	0,074	0,58	0,10	<0,050	<0,050
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	1,0	0,17	<0,050	<0,050
Fluorène	mg/kg Ms	0,081	1,1	0,15	<0,050	<0,050
Phénanthrène	mg/kg Ms	1,2	10,8	1,8	0,12	<0,050
Anthracène	mg/kg Ms	0,32	2,1	0,37	<0,050	<0,050
Fluoranthène	mg/kg Ms	2,1	10,7	1,9	0,10	<0,050
Pyrène	mg/kg Ms	1,5	8,5	1,5	0,10	<0,050
Benzo(a)anthracène	mg/kg Ms	1,2	3,9	0,70	<0,050	<0,050
Chrysène	mg/kg Ms	1,2	5,4	0,79	<0,050	<0,050
Benzo(b)fluoranthène	mg/kg Ms	1,1	3,1	0,56	<0,050	<0,050
Benzo(k)fluoranthène	mg/kg Ms	0,58	1,6	0,29	<0,050	<0,050
Benzo(a)pyrène	mg/kg Ms	1,0	4,0	0,66	<0,050	<0,050
Dibenzo(a,h)anthracène	mg/kg Ms	<0,50 ")	<0,50 m)	0,055	<0,050	<0,050
Benzo(g,h,i)pérylène	mg/kg Ms	0,82	2,9	0,48	<0,050	<0,050
Indéno(1,2,3-cd)pyrène	mg/kg Ms	0,91	2,7	0,51	<0,050	<0,050
HAP (6 Borneff) - somme	mg/kg Ms	6,51	25,0	4,40	0,100 ^{x)}	n.d.
Somme HAP (VROM)	mg/kg Ms	9,40	44,7	7,60	0,220 ^{x)}	n.d.
HAP (EPA) - somme	mg/kg Ms	12,1 ^{x)}	58,4 ×)	10,0 ^{x)}	0,320 ^{x)}	n.d.
Composés aromatiques						
Benzène	mg/kg Ms	<0,050	<0,05	<0,05	<0,05	<0,05
Toluène	mg/kg Ms	<0,050	<0,05	<0,05	<0,05	<0,05
Ethylbenzène	mg/kg Ms	<0,050	<0,05	<0,05	<0,05	<0,05
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050	<0,050

TESTING RVA L 005

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

	Unité	269027 S29 (1,00-1,55 m)	269028 \$30 (0,0-0,4 m)	269029 \$30 (0,4-1,0 m)	269030 \$30 (1,0-2,0 m)
Prétraitement pour analyses des	métaux				
Minéralisation à l'eau régale		++	++	++	++
Métaux					
Antimoine (Sb)	mg/kg Ms		<0,5		
Arsenic (As)	mg/kg Ms	5,2	1,3	4,0	1,6
Baryum (Ba)	mg/kg Ms		4,8		
Cadmium (Cd)	mg/kg Ms	0,1	0,2	1,7	0,2
Chrome (Cr)	mg/kg Ms	15	3,1	19	8,5
Cuivre (Cu)	mg/kg Ms	9,2	1,3	33	1,8
Mercure (Hg)	mg/kg Ms	0,17	<0,05	<0,05	<0,05
Molybdène (Mo)	mg/kg Ms		<1,0		
Nickel (Ni)	mg/kg Ms	11	1,6	5,5	2,4
Plomb (Pb)	mg/kg Ms	16	2,0	3,0	1,9
Sélénium (Se)	mg/kg Ms		<1,0		
Zinc (Zn)	mg/kg Ms	25	7,8	470	63
Hydrocarbures Aromatiques Polycyc	liques (ISO)				
Naphtalène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
Acénaphtylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
Acénaphtène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
Fluorène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
Phénanthrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
Anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
Fluoranthène	mg/kg Ms	0,11	<0,050	<0,050	<0,050
Pyrène	mg/kg Ms	0,13	<0,050	<0,050	<0,050
Benzo(a)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
Chrysène	mg/kg Ms	0,076	<0,050	<0,050	<0,050
Benzo(b)fluoranthène	mg/kg Ms	0,080	<0,050	<0,050	<0,050
Benzo(k)fluoranthène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
Benzo(a)pyrène	mg/kg Ms	0,071	<0,050	<0,050	<0,050
Dibenzo(a,h)anthracène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
Benzo(g,h,i)pérylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
Indéno(1,2,3-cd)pyrène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050
HAP (6 Borneff) - somme	mg/kg Ms	0,261 ^{x)}	n.d.	n.d.	n.d.
Somme HAP (VROM)	mg/kg Ms	0,257 ^{x)}	n.d.	n.d.	n.d.
HAP (EPA) - somme	mg/kg Ms	0,467 ^{x)}	n.d.	n.d.	n.d.
Composés aromatiques		· · · · · · · · · · · · · · · · · · ·			
Benzène	mg/kg Ms	<0,05	<0,050	<0,05	<0,05
Toluène	mg/kg Ms	<0,05	<0,050	<0,05	<0,05
Ethylbenzène	mg/kg Ms	<0,05	<0,050	<0,05	<0,05
m,p-Xylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10
o-Xylène	mg/kg Ms	<0,050	<0,050	<0,050	<0,050

TESTING RVA L 005

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148140 Solide / Eluat

	Unité	269001 S21 (0,0-0,2 m)	269003 S21 (0,2-0,7 m)	269004 S21 (0,7-0,9 m)	269005 S21 (0,9-2,0 m)	26900 S22 (0,0-0,2 m
Composés aromatiques						
Naphtalène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
BTEX total	mg/kg Ms	n.d. ^{*)}				n.d.
сону						
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	<1,0 ^{x)}	<1,0 ^{x)}	<1,0 ^{x)}	<1,0
Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	<0,40	<0,40 ^{x)}	<0,40 ^{x)}	<0,40
Fraction C8-C10	mg/kg Ms	<0,40 ×)	<0,40	<0,40 ×)	<0,40	<0,40
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	23,6	<20,0	<20,0	<20,0
Fraction C10-C12	mg/kg Ms	<4,0 *)	<4,0 *)	<4,0 *)	<4,0 *)	<4,0
Fraction C12-C16	mg/kg Ms	<4,0 *)	<4,0 *)	<4,0	<4,0 *)	<4,0
Fraction C16-C20	mg/kg Ms	<2,0 *)	3,9	<2,0 *)	<2,0 *)	<2,0
Fraction C20-C24	mg/kg Ms	<2,0 *)	3,8	<2,0 *)	<2,0 *)	<2,0
Fraction C24-C28	mg/kg Ms	2,5	4,7	<2,0 *)	<2,0 *)	<2,0
Fraction C28-C32	mg/kg Ms	3,6	5,5	3,9	<2,0 *)	<2,0
Fraction C32-C36	mg/kg Ms	<2,0 *)	2,7	<2,0 *)	<2,0 *)	<2,0
Fraction C36-C40	mg/kg Ms	<2,0 *)	<2,0 *)	<2,0 *)	<2,0	<2,0
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

Composés aromatiques Naphtalène Somme Xylènes BTEX total COHV Chlorure de Vinyle Dichlorométhane Trichlorométhane Trichlorométhane Trichloroéthylène Tétrachloroéthylène 1,1,1-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthane 1,2-Dichloroéthylène Trans-1,2-Dichloroéthylène Traction aliphatique C5-C6 Fraction C5-C10 Fraction C8-C10 Fraction aliphatique >C6-C8	Unité	269007 S22 (0,2-0,6 m)	269008 S22 (0,6-1,0 m)	269009 S23 (0,0-0,3 m)	269010 S23 (0,3-0,5 m)	269011 S23 (0,5-1,0 m)
Composés aromatiques						
Naphtalène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
S BTEX total	mg/kg Ms			n.d. ^{*)}		
COHV						
E Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
2 1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
Somme cis/trans-1,2-	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	<1,0 ^{x)}	<1,0 ^{x)}	<1,0 ^{x)}	<1,0 ×
$\frac{\omega}{Z}$ Fraction >C6-C8	mg/kg Ms	<0,40 ×)	<0,40 ×)	<0,40 ×)	<0,40 ×)	<0,40 ×
Fraction C8-C10	mg/kg Ms	<0,40 ×)	<0,40 ×)	<0,40 ×)	<0,40 ×)	<0,40
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
·=	mg/kg Ms	110	<20,0	<20,0	48,0	<20,0
Hydrocarbures totaux C10-C40 Fraction C10-C12 Fraction C12-C16 Fraction C16-C20	mg/kg Ms	<4,0 *)	<4,0 *)	<4,0 *)	<4,0 *)	<4,0
Fraction C12-C16	mg/kg Ms	<4,0 *)	<4,0 *)	<4,0 *)	<4,0 *)	<4,0
Fraction C16-C20	mg/kg Ms	4,9 *)	<2,0 *)	<2,0 *)	2,7 *)	<2,0
দু Fraction C20-C24	mg/kg Ms	13,7 "	<2,0 *)	<2,0 *)	9,6	<2,0
Fraction C24-C28	mg/kg Ms	30,3 ^{*)}	3,2 *)	<2,0 *)	15,7 ^{*)}	<2,0
Fraction C28-C32	mg/kg Ms	34 ')	3,3 *)	3,2 *)	12 ^{*)}	<2,0
Fraction C32-C36	mg/kg Ms	19,5	<2,0 *)	<2,0 *)	5,6 *)	<2,0
Fraction C20-C24 Fraction C24-C28 Fraction C28-C32 Fraction C32-C36 Fraction C36-C40 Polychlorobiphényles	mg/kg Ms	5,4 ^{*)}	<2,0 *)	<2,0 *)	<2,0 *)	<2,0
Polychlorobiphényles						
Somme 6 PCB	mg/kg Ms	0,017 ^{x)}	n.d.	n.d.	n.d.	n.d.
Somme 7 PCB (Ballschmiter	mg/kg Ms	0,019 ^{x)}	n.d.	n.d.	n.d.	n.d.
Somme 6 PCB Somme 7 PCB (Ballschmitter						page 15 de 29

TESTING RVA L 005

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

	Unité	269012 S23 (1,0-1,5 m)	269013 S24 (0,0-0,1 m)	269014 S24 (0,1-0,3 m)	269015 S24 (0,3-0,6 m)	2690 S24 (0,6-1,0
Composés aromatiques						
Naphtalène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
BTEX total	mg/kg Ms		n.d.			<u></u>
COHV					0.00	0.00
Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Frichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Frichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
Γétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
I,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-	mg/kg Ms mg/kg Ms	<0,025 n.d.	<0,025 n.d.	<0,025 n.d.	<0,025 n.d.	<0,025 n.d
Dichloroéthylènes Hydrocarbures totaux (ISO)						
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	<1,0 ×)	<1,0 ^{x)}	<1,0 ^{x)}	<1,0
Fraction >C6-C8	mg/kg Ms	<0,40 x)	<0,40 ×)	<0,40 ^{x)}	<0,40 x)	<0,40
Fraction C8-C10	mg/kg Ms	<0,40 ×)	<0,40 ×)	<0,40 ×)	<0,40 ×)	<0,40
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,40
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	<20,0	150	120	<20,0
Fraction C10-C12	mg/kg Ms	<4,0 ^{*)}	<4,0 *)	<4,0 *)	<4,0 *)	<4,0
Fraction C12-C16	mg/kg Ms	<4,0 *)	<4,0 *)	<4,0 *)	<4,0 *)	<4,0
Fraction C16-C20	mg/kg Ms	<2,0 ^{*)}	<2,0 *)	17,5	20,7	<2,0
Fraction C20-C24	mg/kg Ms	~2,0	~2,0	30,0	20,1	
Fraction C24-C28	mg/kg Ms	<2,0 ^{')} <2,0 ^{')}	<2,0 ^{')}	30,0	28,4 ⁹ 32,5	<2,0
Fraction C28-C32	mg/kg Ms	~2,0	4,9	39,9 ⁷	27 *)	<2,0
Fraction C32-C36		<2,0	4,9	33	21	<2,0
Fraction C32-C36	mg/kg Ms mg/kg Ms	~2,0	<2,0	10,1	11,5	<2,0
Polychlorobiphényles	mg/kg ivis	<2,0	<2,0	5,9	3,0	<2,0
Somme 6 PCB	mg/kg Ms	n.d.	n.d.	0,0060 ^{x)}	n.d.	n.d
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	n.d.	0,0060 ^{x)}	n.d.	n.d.

ESTING RVA L 005

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole		Unité	269017 S25 (0,1-0,5 m)	269018 \$25 (0,5-0,8 m)	269019 \$25 (0,8-1,2 m)	269020 S26 (0,3-0,7 m)	269021 S26 (0,7-1,0 m)
qués	Composés aromatiques						
mar	Naphtalène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
ont	Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
és s	BTEX total	mg/kg Ms	n.d. *)			n.d. ["]	
alis	СОНУ						
tern	Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
ê	Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
et/o	Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
ités	Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
réd	Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
acc	Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
non	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
tres	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
amè	1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
par	1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
les	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
euls	1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
Š.	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
125:201	Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
1702	Hydrocarbures totaux (ISO)						
Ü	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
õ	Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	<1,0 ^{x)}	<1,0 ^{x)}	<1,0 ^{x)}	<1,0 ×
<u> </u>	Fraction >C6-C8	mg/kg Ms	<0,40 ×)	<0,40 ×)	<0,40 ×)	<0,40 ×)	<0,40 ×
Je E	Fraction C8-C10	mg/kg Ms	<0,40 ×)	<0,40 ×)	<0,40 ×)	<0,40 ×)	<0,40
חסר	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
lar	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
selon la	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
tés s	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
	Hydrocarbures totaux C10-C40	mg/kg Ms	<20,0	<20,0	<20,0	22,5	<20,0
accr	Fraction C10-C12	mg/kg Ms	<4,0 *)	<4,0 *)	<4,0 *)	<4,0 *)	<4,0
ont	Fraction C12-C16	mg/kg Ms	<4,0 ^{*)}	<4,0 ^{*)}	<4,0 ^{*)}	<4,0 *)	<4,0
BV sont accréd	Fraction C16-C20	mg/kg Ms	<2,0 *)	<2,0 *)	<2,0 *)	3,8 *)	<2,0
sst E	Fraction C20-C24	mg/kg Ms	<2,0 *)	<2,0 *)	<2,0 *)	3,8 *)	5,3 [*]
Ň,	Fraction C24-C28	mg/kg Ms	2,9 *)	<2,0 *)	<2,0 *)	5,0 ^{*)}	3,6
r AL	Fraction C28-C32	mg/kg Ms	2,3 *)	<2,0 *)	<2,0 *)	4,6 *)	<2,0
s pa	Fraction C32-C36	mg/kg Ms	<2,0 *)	<2,0 *)	<2,0 *)	3,0 *)	<2,0
alisé	Fraction C36-C40	mg/kg Ms	<2,0 *)	<2,0 *)	<2,0 *)	<2,0 *)	<2,0
s réa	Polychlorobiphényles						
Les paramètres réalisés par AL-West	Somme 6 PCB	mg/kg Ms	0,0020 ^{x)}	n.d.	n.d.	n.d.	n.d.
Ĕ	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,0020 ^{x)}	n.d.	n.d.	n.d.	n.d.

page 17 de 29 TESTING RVA L 005

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole		Unité	269022 S27 (0,3-0,9 m)	269023 S28 (0,0-0,7 m)	269024 S28 (0,7-1,0 m)	269025 S28 (1,0-2,0 m)	269026 S29 (0,00-1,00 m)
qués	Composés aromatiques						
mar	Naphtalène	mg/kg Ms	<0,10	0,34	<0,10	<0,10	<0,10
ont	Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
és s	BTEX total	mg/kg Ms	n.d. ^{*)}				
ıalis	сону						
cterr	Chlorure de Vinyle	mg/kg Ms	<0,02	<0,02	<0,02	<0,02	<0,02
în e	Dichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
et/o	Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
ités	Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
créd	Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
) acc	Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
nor	1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
tres	1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
amè	1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
par	1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05	<0,05
les	cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
enls	1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10	<0,10
7. S	Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025	<0,025
25:201	Somme cis/trans-1,2- Dichloroéthylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.	n.d.
170	Hydrocarbures totaux (ISO)						
Ш	Fraction aliphatique C5-C6	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
000	Fraction C5-C10	mg/kg Ms	<1,0 ^{x)}	<1,0 ^{x)}	<1,0 ^{x)}	<1,0 ^{x)}	<1,0
<u>~</u>	Fraction >C6-C8	mg/kg Ms	<0,40 ^{x)}	<0,40 ^{x)}	<0,40 ^{x)}	<0,40 ^{x)}	<0,40
Je E	Fraction C8-C10	mg/kg Ms	<0,40 ^{x)}	<0,40 ^{x)}	<0,40 ^{x)}	<0,40 ^{x)}	<0,40
norr	Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
<u>a</u>	Fraction aromatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
selon la	Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
tés s	Fraction aromatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20	<0,20
_	Hydrocarbures totaux C10-C40	mg/kg Ms	61,2	150	<20,0	<20,0	27,4
accı	Fraction C10-C12	mg/kg Ms	<4,0 ^{*)}	<4,0 *)	<4,0 *)	<4,0 *)	<4,0
ont	Fraction C12-C16	mg/kg Ms	< 4,0 *)	8,4 ^{*)}	<4,0 ^{*)}	< 4,0 *)	<4,0
BV sont accréd	Fraction C16-C20	mg/kg Ms	5,8 ^{*)}	49,0 ^{*)}	5,9 ^{*)}	<2,0 *)	<2,0
est E	Fraction C20-C24	mg/kg Ms	7,8 *)	29,1 ^{*)}	4,1 ^{*)}	<2,0 *)	<2,0
Ň	Fraction C24-C28	mg/kg Ms	10,6 ^{')}	27,8 *)	3,4 *)	<2,0 *)	4,8
ır AL	Fraction C28-C32	mg/kg Ms	13 ^{*)}	18 ^{*)}	2,6 *)	<2,0 *)	7,6
s pe	Fraction C32-C36	mg/kg Ms	12,1 ^{*)}	11,4 ^{*)}	<2,0 *)	<2,0 *)	7,4
alisé	Fraction C36-C40	mg/kg Ms	8,6	2,8 *)	<2,0 *)	<2,0 *)	4,7
s ré	Polychlorobiphényles						
Les paramètres réalisés par AL-West	Somme 6 PCB	mg/kg Ms	0,028 ^{x)}	0,0040 ^{x)}	n.d.	n.d.	n.d.
Ě	Somme 7 PCB (Ballschmiter)	mg/kg Ms	0,030 ^{x)}	0,0040 ^{x)}	n.d.	n.d.	n.d.

page 18 de 29 TESTING RVA L 005

Your labs. Your service.

n° Cde 1148140 Solide / Eluat

	Unité	269027 S29 (1,00-1,55 m)	269028 S30 (0,0-0,4 m)	269029 S30 (0,4-1,0 m)	269030 \$30 (1,0-2,0 m)
Composés aromatiques					
Naphtalène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10
Somme Xylènes	mg/kg Ms	n.d.	n.d.	n.d.	n.d.
BTEX total	mg/kg Ms		n.d.		
COHV	ma/ka Ma	-0.02	-0.02	-0.02	-0.00
Chlorure de Vinyle Dichlorométhane	mg/kg Ms mg/kg Ms	<0,02 <0,05	<0,02 <0,05	<0,02 <0,05	<0,02
Dichloromethane Trichlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05
Tétrachlorométhane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05 <0,05
Trichloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05
Tétrachloroéthylène	mg/kg Ms	<0,05	<0,05	<0,05	<0,05
1,1,1-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,05
1,1-Dichloroéthane	mg/kg Ms	<0,10	<0,10	<0,10	<0,10
1,2-Dichloroéthane	mg/kg Ms	<0,05	<0,05	<0,05	<0,15
cis-1,2-Dichloroéthène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025
1,1-Dichloroéthylène	mg/kg Ms	<0,10	<0,10	<0,10	<0,10
Trans-1,2-Dichloroéthylène	mg/kg Ms	<0,025	<0,025	<0,025	<0,025
Somme cis/trans-1,2-	mg/kg Ms	n.d.	n.d.	n.d.	n.d.
Dichloroéthylènes					
Hydrocarbures totaux (ISO)					
Fraction aliphatique C5-C6	mg/kg Ms	<0,20	<0,20	<0,20	<0,20
Fraction C5-C10	mg/kg Ms	<1,0	<1,0	<1,0	<1,0
Fraction >C6-C8	mg/kg Ms	<0,40	<0,40	<0,40	<0,40
Fraction C8-C10	mg/kg Ms	<0,40	<0,40	<0,40	<0,40
Fraction aliphatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20
Fraction aromatique >C6-C8	mg/kg Ms	<0,20	<0,20	<0,20	<0,20
Fraction aliphatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20
Fraction aromatique >C8-C10	mg/kg Ms	<0,20	<0,20	<0,20	<0,20
Hydrocarbures totaux C10-C40	mg/kg Ms	110	<20,0	<20,0	<20,0
Fraction C10-C12 Fraction C12-C16	mg/kg Ms	<4,0 °	<4,0	<4,0	<4,0 ⁷
Fraction C16-C20	mg/kg Ms mg/kg Ms	<4,0 ⁷ 3,4 ⁹	<4,0	<4,0	<4,0 ⁹ <2,0 ⁹
Fraction C20-C24	mg/kg Ms	15,6	<2,0 ^{''} <2,0 ^{''}	<2,0 ° <2,0 °	<2,0 <2,0
Fraction C24-C28	mg/kg Ms	23,5	<2,0 *)	<2,0 *)	<2,0 <2,0
Fraction C28-C32	mg/kg Ms	23,3	<2,0	<2,0	<2,0 <2,0
Fraction C32-C36	mg/kg Ms	25,9 ^{*)}	<2,0	<2,0	<2,0
Fraction C36-C40	mg/kg Ms	12,5	<2,0	<2,0	<2,0 <2,0
Polychlorobiphényles	1119/119 1110	. 2,0	72,0	~=,0	72,0
Somme 6 PCB	mg/kg Ms	n.d.	n.d.	n.d.	n.d.
Somme 7 PCB (Ballschmiter)	mg/kg Ms	n.d.	n.d.	n.d.	n.d.

page 19 de 29 TESTING RVA L 005

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	269001 S21 (0,0-0,2 m)	269003 S21 (0,2-0,7 m)	269004 S21 (0,7-0,9 m)	269005 S21 (0,9-2,0 m)	269006 S22 (0,0-0,2 m)
Polychlorobiphényles						
PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (52)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (101)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (118)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (138)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (153)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (180)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
Analyses sur éluat après lixivia	ation					
L/S cumulé	ml/g	10,0				10,0
Conductivité électrique	μS/cm	110				100
рН		8,2				9,5
Température	°C	19,7				18,1
Analyses Physico-chimiques s	ur éluat					
Résidu à sec	mg/l	<100				<100
Fluorures (F)	mg/l	0,1				0,1
Indice phénol	mg/l	<0,010				<0,010
Chlorures (CI)	mg/l	4,9				3,7
Sulfates (SO4)	mg/l	9,8				23
COT	mg/l	2,2				<1,0
Métaux sur éluat						
Antimoine (Sb)	μg/l	<5,0				<5,0
Arsenic (As)	μg/l	<5,0				<5,0
Baryum (Ba)	μg/l	<10				<10
Cadmium (Cd)	μg/l	<0,1				<0,1
Chrome (Cr)	μg/l	<2,0				<2,0
Cuivre (Cu)	μg/l	5,1				3,4
Mercure	μg/l	<0,03				<0,03
Molybdène (Mo)	μg/l	<5,0				<5,0
Nickel (Ni)	μg/l	<5,0				<5,0
Plomb (Pb)	μg/l	<5,0				<5,0
Sélénium (Se)	μg/l	<5,0				<5,0
Zinc (Zn)	μg/l	<2,0				<2,0

Your labs. Your service.

	Unité	269007 S22 (0,2-0,6 m)	269008 S22 (0,6-1,0 m)	269009 S23 (0,0-0,3 m)	269010 S23 (0,3-0,5 m)	269011 S23 (0,5-1,0 m)
Polychlorobiphényles						
PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (52)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (101)	mg/kg Ms	0,002	<0,001	<0,001	<0,001	<0,001
PCB (118)	mg/kg Ms	0,002	<0,001	<0,001	<0,001	<0,001
PCB (138)	mg/kg Ms	0,006	<0,001	<0,001	<0,001	<0,001
PCB (153)	mg/kg Ms	0,005	<0,001	<0,001	<0,001	<0,001
PCB (180)	mg/kg Ms	0,004	<0,001	<0,001	<0,001	<0,001
Analyses sur éluat après lixivia	ation					
L/S cumulé	ml/g			10,0		
Conductivité électrique	μS/cm			94,7		
рН				8,5		
Température	°C			19,5		
Analyses Physico-chimiques s	ur éluat					
Résidu à sec	mg/l			<100		
Fluorures (F)	mg/l			0,1		
Indice phénol	mg/l			<0,010		
Chlorures (CI)	mg/l			3,7		
Sulfates (SO4)	mg/l			7,5		
COT	mg/l			1,8		
Métaux sur éluat	<u> </u>			•		
Antimoine (Sb)	μg/l			<5,0		
Arsenic (As)	μg/l			<5,0		
Baryum (Ba)	μg/l			<10		
Cadmium (Cd)	μg/l			<0,1		
Chrome (Cr)	μg/l			<2,0		
Cuivre (Cu)	μg/l			3,4		
Mercure	μg/l			<0,03		
Molybdène (Mo)	μg/l			<5,0		
Nickel (Ni)	μg/l			<5,0		
Plomb (Pb)	μg/l			<5,0		
Sélénium (Se)	μg/l			<5,0		
	μg/l			2,4		

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	269012 S23 (1,0-1,5 m)	269013 S24 (0,0-0,1 m)	269014 S24 (0,1-0,3 m)	269015 S24 (0,3-0,6 m)	269016 S24 (0,6-1,0 m)
Polychlorobiphényles						
PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (52)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (101)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (118)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (138)	mg/kg Ms	<0,001	<0,001	0,002	<0,001	<0,001
PCB (153)	mg/kg Ms	<0,001	<0,001	0,002	<0,001	<0,001
PCB (180)	mg/kg Ms	<0,001	<0,001	0,002	<0,001	<0,001
Analyses sur éluat après lixivia	ntion					
L/S cumulé	ml/g		10,0			
Conductivité électrique	μS/cm		180			
рН			8,2			
Température	°C		19,8			
Analyses Physico-chimiques s	ur éluat					
Résidu à sec	mg/l		130			
Fluorures (F)	mg/l		0,2			
Indice phénol	mg/l		<0,010			
Chlorures (CI)	mg/l		6,4			
Sulfates (SO4)	mg/l		43			
СОТ	mg/l		1,3			
Métaux sur éluat						
Antimoine (Sb)	μg/l		<5,0			
Arsenic (As)	μg/l		<5,0			
Baryum (Ba)	μg/l		16			
Cadmium (Cd)	μg/l		<0,1			
Chrome (Cr)	μg/l		<2,0			
Cuivre (Cu)	μg/l		2,6			
Mercure	μg/l		<0,03			
Molybdène (Mo)	μg/l		<5,0			
Nickel (Ni)	μg/l		<5,0			
Plomb (Pb)	μg/l		<5,0			
Sélénium (Se)	μg/l		65			
Zinc (Zn)	μg/l		<2,0			

Your labs. Your service.

	Unité	269017 S25 (0,1-0,5 m)	269018 S25 (0,5-0,8 m)	269019 S25 (0,8-1,2 m)	269020 S26 (0,3-0,7 m)	269021 S26 (0,7-1,0 m)
Polychlorobiphényles						
PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (52)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (101)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (118)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
PCB (138)	mg/kg Ms	0,001	<0,001	<0,001	<0,001	<0,001
PCB (153)	mg/kg Ms	0,001	<0,001	<0,001	<0,001	<0,001
PCB (180)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001
Analyses sur éluat après lixivia	ation					
L/S cumulé	ml/g	10,0			10,0	
Conductivité électrique	μS/cm	2300			1000	
рН		7,7			11,4	
Température	°C	20,5			19,3	
Analyses Physico-chimiques s	ur éluat					
Résidu à sec	mg/l	2600			730	
Fluorures (F)	mg/l	1,5			0,2	
Indice phénol	mg/l	<0,010			<0,010	
Chlorures (CI)	mg/l	1,2			19	
Sulfates (SO4)	mg/l	1300			270	
COT	mg/l	<1,0			3,9	
Métaux sur éluat	-					
Antimoine (Sb)	μg/l	<5,0			<5,0	
Arsenic (As)	μg/l	<5,0			32	
Baryum (Ba)	μg/l	10			31	
Cadmium (Cd)	μg/l	2,8			<0,1	
Chrome (Cr)	μg/l	<2,0			11	
Cuivre (Cu)	μg/l	32			47	
Mercure	μg/l	0,27			0,07	
Molybdène (Mo)	μg/l	<5,0			7,4	
Nickel (Ni)	μg/l	<5,0			<5,0	
Plomb (Pb)	<u>μg</u> /l	<5,0			<5,0	
Sélénium (Se)	μg/l	9,3			8,6	
Zinc (Zn)	<u>μg</u> /l	1600			<2,0	

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

	Unité	269022 S27 (0,3-0,9 m)	269023 S28 (0,0-0,7 m)	269024 S28 (0,7-1,0 m)	269025 S28 (1,0-2,0 m)	269026 \$29 (0,00-1,00 m)		
Polychlorobiphényles								
PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001		
PCB (52)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001	<0,001		
PCB (101)	mg/kg Ms	0,004	<0,001	<0,001	<0,001	<0,001		
PCB (118)	mg/kg Ms	0,002	<0,001	<0,001	<0,001	<0,001		
PCB (138)	mg/kg Ms	0,009	0,002	<0,001	<0,001	<0,001		
PCB (153)	mg/kg Ms	0,009	<0,001	<0,001	<0,001	<0,001		
PCB (180)	mg/kg Ms	0,006	0,002	<0,001	<0,001	<0,001		
Analyses sur éluat après lixivia	ation							
L/S cumulé	ml/g	10,0						
Conductivité électrique	μS/cm	170						
рН		9,2						
Température	°C	20,0						
Analyses Physico-chimiques sur éluat								
Résidu à sec	mg/l	130						
Fluorures (F)	mg/l	0,5						
Indice phénol	mg/l	<0,010						
Chlorures (CI)	mg/l	2,3						
Sulfates (SO4)	mg/l	47						
СОТ	mg/l	1,5						
Métaux sur éluat								
Antimoine (Sb)	μg/l	5,3						
Arsenic (As)	μg/l	31						
Baryum (Ba)	μg/l	11						
Cadmium (Cd)	μg/l	<0,1						
Chrome (Cr)	μg/l	<2,0						
Cuivre (Cu)	μg/l	10						
Mercure	μg/l	0,07						
Molybdène (Mo)	μg/l	5,9						
Nickel (Ni)	μg/l	<5,0						
Plomb (Pb)	μg/l	<5,0						
Sélénium (Se)	μg/l	<5,0						
Zinc (Zn)	μg/l	2,5						

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148140 Solide / Eluat

et/ou externalisés sont marqués du symbole		Unité	269027 S29 (1,00-1,55 m)	269028 \$30 (0,0-0,4 m)	269029 \$30 (0,4-1,0 m)	269030 \$30 (1,0-2,0 m)
lués	Polychlorobiphényles					
narc	PCB (28)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001
ont r	PCB (52)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001
S S	PCB (101)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001
alisé	PCB (118)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001
tern	PCB (138)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001
n ex	PCB (153)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001
et/o	PCB (180)	mg/kg Ms	<0,001	<0,001	<0,001	<0,001
tés	Analyses sur éluat après lixiviation					
accrédités	L/S cumulé	ml/g		10,0		
acc	Conductivité électrique	μS/cm		60,3		
paramètres non	рН			9,5		
tres	Température	°C		17,8		
amè	Analyses Physico-chimiques sur élu	ıat				
para	Résidu à sec	mg/l		<100		
ISO/IEC 17025:2017. Seuls les	Fluorures (F)	mg/l		0,1		
euls	Indice phénol	mg/l		<0,010		
7. S	Chlorures (CI)	mg/l		3,0		
201	Sulfates (SO4)	mg/l		10		
)25:	сот	mg/l		<1,0		
17(Métaux sur éluat					
/EC	Antimoine (Sb)	μg/l		<5,0		
80	Arsenic (As)	μg/l		<5,0		
Z H	Baryum (Ba)	μg/l		<10		
.me	Cadmium (Cd)	μg/l		<0,1		
l noi	Chrome (Cr)	μg/l		<2,0		
on la	Cuivre (Cu)	μg/l		2,2		
selc	Mercure	μg/l		<0,03		
lités	Molybdène (Mo)	μg/l		<5,0		
créa	Nickel (Ni)	μg/l		<5,0		
sont accrédités selon la norme	Plomb (Pb)	μg/l		<5,0		
	Sélénium (Se)	μg/l		<5,0		
BV	Zinc (Zn)	μg/l		<2,0		
_						

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

es paramètres réalisés par AL-West

m) Etant donnée l'influence perturbatrice de l'échantillon, les limites de quantification ont été relevées.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que des informations sur la procédure de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148140 Solide / Eluat

Début des analyses: 19.04.2022 Fin des analyses: 28.04.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Mme Delphine Colin, Tel. +33/380681935 Chargée relation clientèle

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148140 Solide / Eluat

Liste des méthodes

marqués du symbole

sont

accrédités et/ou

paramètres non

es

Seuls

SO/IEC 17025:2017.

norme

<u>a</u>

selon

accrédités

BV sont

par AL-West

es paramètres réalisés

Cf. NEN-ISO 10390 (sol uniquement): pH-H2O

Conforme à EN-ISO 11885. EN 16174: Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu)

Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn)

Conforme à EN-ISO 17294-2 (2004): Antimoine (Sb) Arsenic (As) Baryum (Ba) Cadmium (Cd) Chrome (Cr) Cuivre (Cu)

Molybdène (Mo) Nickel (Ni) Plomb (Pb) Sélénium (Se) Zinc (Zn)

Conforme à ISO 10359-1, conforme à EN 16192 : Fluorures (F) Conforme à ISO 15923-1: Chlorures (CI) Sulfates (SO4) Conforme à ISO 16772 et EN 16174 : Mercure (Hg) Conforme à NEN-EN 16179 : Prétraitement de l'échantillon

conforme à NEN-EN-ISO 16558-1: Fraction aliphatique C5-C6 Fraction C5-C10 Fraction > C6-C8 Fraction C8-C10

Fraction aliphatique >C6-C8 Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10

Fraction aromatique >C8-C10

conforme EN 16192 : COT

conforme ISO 10694 (2008): **COT Carbone Organique Total**

Equivalent à NF EN ISO 15216 : Résidu à sec

éguivalent à NF EN 16181 : Naphtalène Acénaphtylène Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène

> Benzo(a)anthracène Chrysène Benzo(b)fluoranthène Benzo(k)fluoranthène Benzo(a)pyrène Dibenzo(a,h)anthracène Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène HAP (6 Borneff) - somme

Somme HAP (VROM) HAP (EPA) - somme

ISO 16703 *) : Fraction C10-C12 Fraction C12-C16 Fraction C16-C20 Fraction C20-C24 Fraction C24-C28

Fraction C28-C32 Fraction C32-C36 Fraction C36-C40

ISO 16703 Hydrocarbures totaux C10-C40

ISO 22155 *) : BTEX total

ISO 22155 Benzène Toluène Ethylbenzène m,p-Xylène o-Xylène Naphtalène Somme Xylènes Chlorure de Vinyle

Dichlorométhane Trichlorométhane Tétrachlorométhane Trichloroéthylène Tétrachloroéthylène

1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,1-Dichloroéthane 1,2-Dichloroéthane cis-1,2-Dichloroéthane

1,1-Dichloroéthylène Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes

méthode interne Broyeur à mâchoires Tamisage à 2 mm méthode interne (conforme NEN-EN-ISO 12846):

NEN-EN 15934; EN12880: Matière sèche

NEN-EN 16167

PCB (153) PCB (180)

NEN-EN 16192 Indice phénol

NF EN 12457-2 Lixiviation (EN 12457-2)

NF-EN 16174; NF EN 13657 (déchets): Minéralisation à l'eau régale

Masse échantillon total inférieure à 2 kg <Sans objet>

Selon norme lixiviation *): Masse brute Mh pour lixiviation Volume de lixiviant L ajouté pour l'extraction Fraction soluble cumulé (var. L/S)

> Antimoine cumulé (var. L/S) Arsenic cumulé (var. L/S) Baryum cumulé (var. L/S) Cadmium cumulé (var. L/S) Chlorures cumulé (var. L/S) Chrome cumulé (var. L/S) COT cumulé (var. L/S) Cuivre cumulé (var. L/S)

Fluorures cumulé (var. L/S) Indice phénol cumulé (var. L/S) Mercure cumulé (var. L/S)

Molybdène cumulé (var. L/S) Nickel cumulé (var. L/S) Plomb cumulé (var. L/S) Sélénium cumulé (var. L/S)

Sulfates cumulé (var. L/S) Zinc cumulé (var. L/S)

Fraction >4mm (EN12457-2) L/S cumulé Conductivité électrique pH Température Selon norme lixiviation :

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Annexe de N° commande 1148140

CONSERVATION, TEMPS DE CONSERVATION ET FLACONNAGE

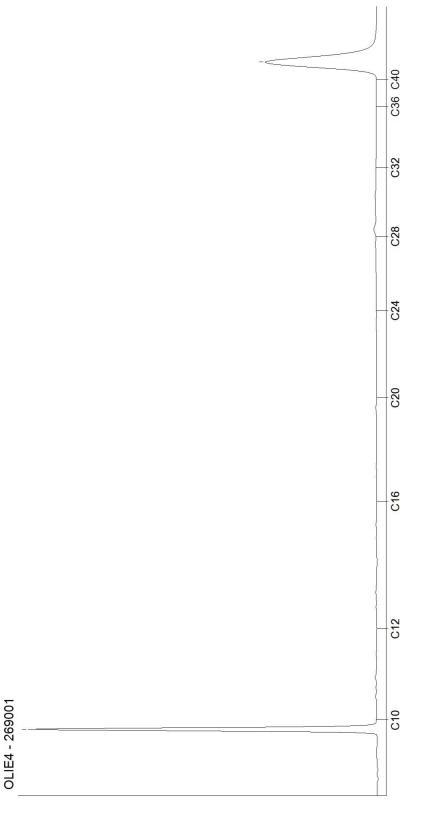
Le délai de conservation des échantillons est expiré pour les analyses suivantes :

Le délai de conservation	n des échantillons est expiré pour les analyses suivantes :
Ethylbenzène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
Fraction C16-C20	269001, 269003, 269006, 269007, 269009, 269012, 269013, 269014, 269016, 269017, 269018, 269019, 269020, 269022, 269024, 269025, 269026, 269027, 269028, 269029
Fraction C20-C24	269001, 269003, 269006, 269007, 269009, 269012, 269013, 269014, 269016, 269017, 269018, 269019, 269020, 269022, 269024, 269025, 269026, 269027, 269028, 269029
Tétrachloroéthylène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
Tétrachlorométhane	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
m,p-Xylène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
cis-1,2- Dichloroéthène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
Dichlorométhane	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
Naphtalène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
1,1-Dichloroéthane	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
1,1-Dichloroéthylène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
Chlorure de Vinyle	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
Fraction C28-C32	269001, 269003, 269006, 269007, 269009, 269012, 269013, 269014, 269016, 269017, 269018, 269019, 269020, 269022, 269024, 269025, 269026, 269027, 269028, 269029
	269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
Benzène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
Trans-1,2- Dichloroéthylène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
Trichloroéthylène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023, 269024, 269025, 269026, 269027, 269028, 269029, 269030
Fraction C12-C16	269001, 269003, 269006, 269007, 269009, 269012, 269013, 269014, 269016, 269017, 269018, 269019, 269020, 269022, 269024, 269025, 269026, 269027, 269028, 269029
1,2-Dichloroéthane	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012, 269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023,

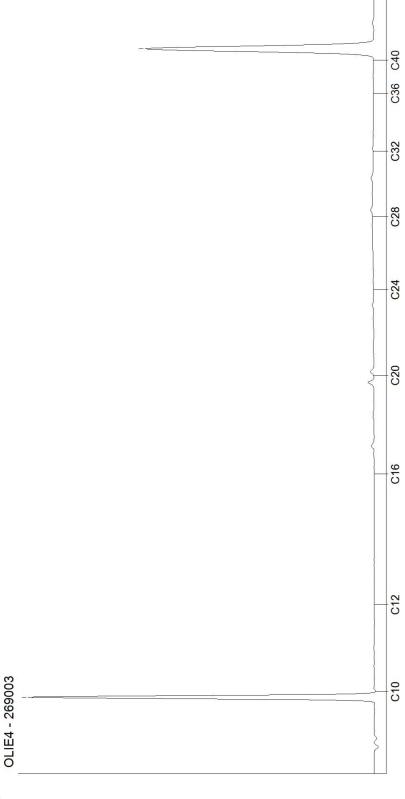
Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

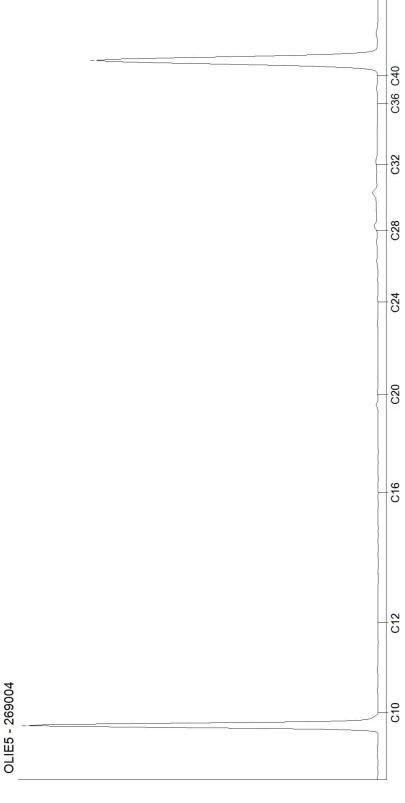
e-Mail: info@al-west.nl, www.al-west.nl

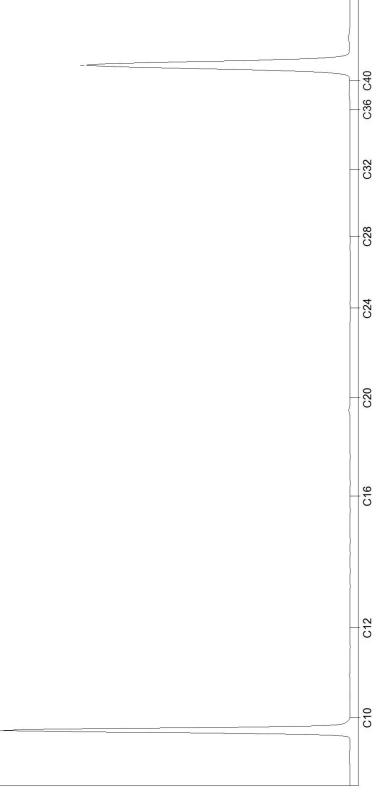


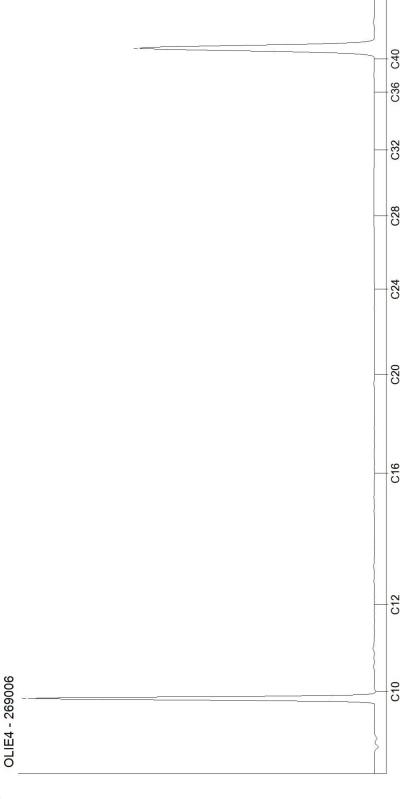
Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

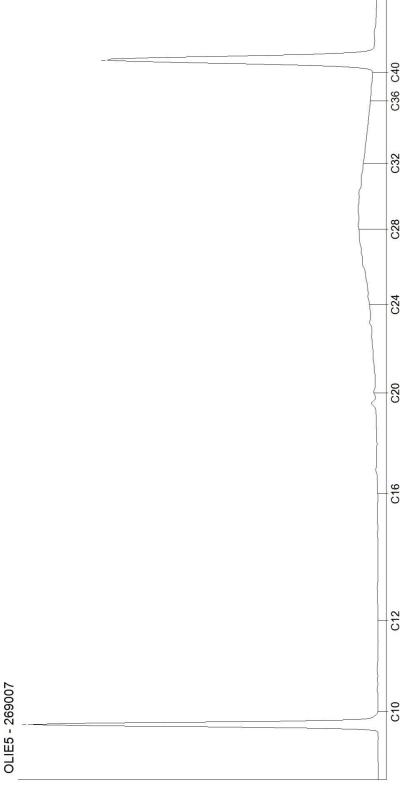

	269024, 269025, 269026, 269027, 269028, 269029, 269030
Fraction C10-C12	269001, 269003, 269006, 269007, 269009, 269012, 269013, 269014, 269016, 269017, 269018,
	269019, 269020, 269022, 269024, 269025, 269026, 269027, 269028, 269029
Trichlorométhane	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012,
	269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023,
	269024, 269025, 269026, 269027, 269028, 269029, 269030
o-Xylène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012,
	269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023,
	269024, 269025, 269026, 269027, 269028, 269029, 269030
Fraction C24-C28	269001, 269003, 269006, 269007, 269009, 269012, 269013, 269014, 269016, 269017, 269018,
	269019, 269020, 269022, 269024, 269025, 269026, 269027, 269028, 269029
Toluène	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012,
	269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023,
	269024, 269025, 269026, 269027, 269028, 269029, 269030
Somme cis/trans-1,2-	
Dichloroéthylènes	269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023,
	269024, 269025, 269026, 269027, 269028, 269029, 269030
	269001, 269003, 269006, 269007, 269009, 269012, 269013, 269014, 269016, 269017, 269018,
C10-C40	269019, 269020, 269022, 269024, 269025, 269026, 269027, 269028, 269029
Somme Xylènes	269001, 269003, 269004, 269005, 269006, 269007, 269008, 269009, 269010, 269011, 269012,
	269013, 269014, 269015, 269016, 269017, 269018, 269019, 269020, 269021, 269022, 269023,
	269024, 269025, 269026, 269027, 269028, 269029, 269030
Fraction C32-C36	269001, 269003, 269006, 269007, 269009, 269012, 269013, 269014, 269016, 269017, 269018,
	269019, 269020, 269022, 269024, 269025, 269026, 269027, 269028, 269029
Fraction C36-C40	269001, 269003, 269006, 269007, 269009, 269012, 269013, 269014, 269016, 269017, 269018,
	269019, 269020, 269022, 269024, 269025, 269026, 269027, 269028, 269029

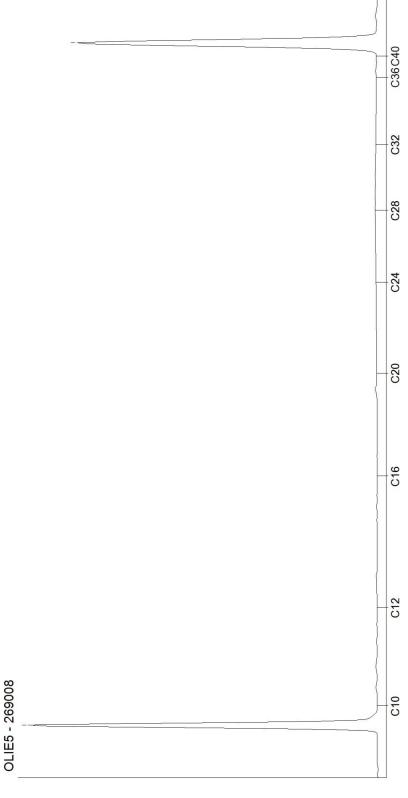
DOC-13-18307524-FR-P29

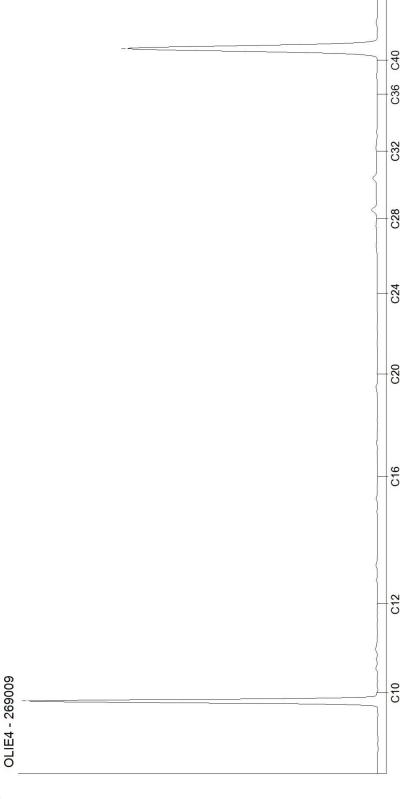

CHROMATOGRAM for Order No. 1148140, Analysis No. 269001, created at 25.04.2022 07:08:47 Nom d'échantillon: S21 (0,0-0,2 m)

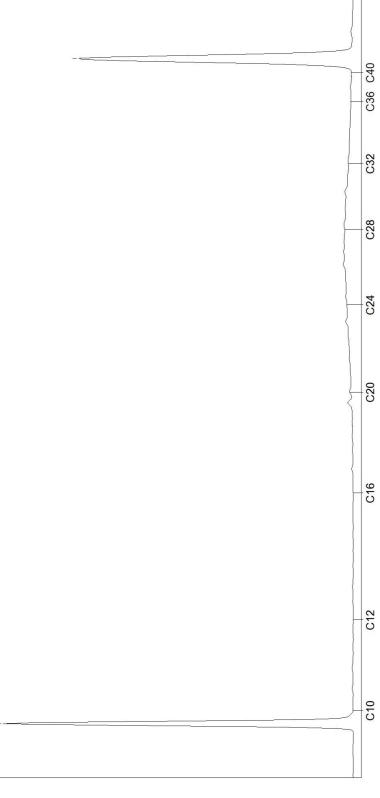

CHROMATOGRAM for Order No. 1148140, Analysis No. 269003, created at 22.04.2022 09:36:16 Nom d'échantillon: S21 (0,2-0,7 m)

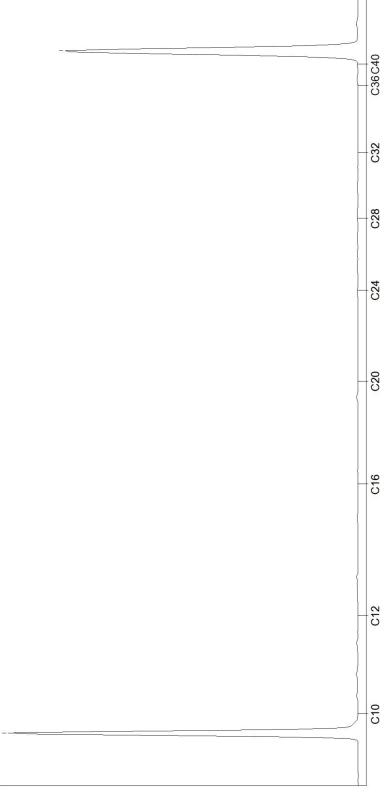

CHROMATOGRAM for Order No. 1148140, Analysis No. 269004, created at 25.04.2022 06:42:50 Nom d'échantillon: S21 (0,7-0,9 m)

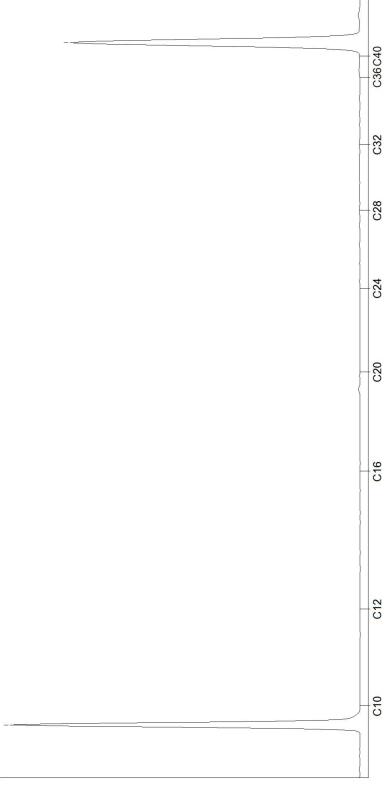

CHROMATOGRAM for Order No. 1148140, Analysis No. 269005, created at 25.04.2022 06:42:50 Nom d'échantillon: S21 (0,9-2,0 m)

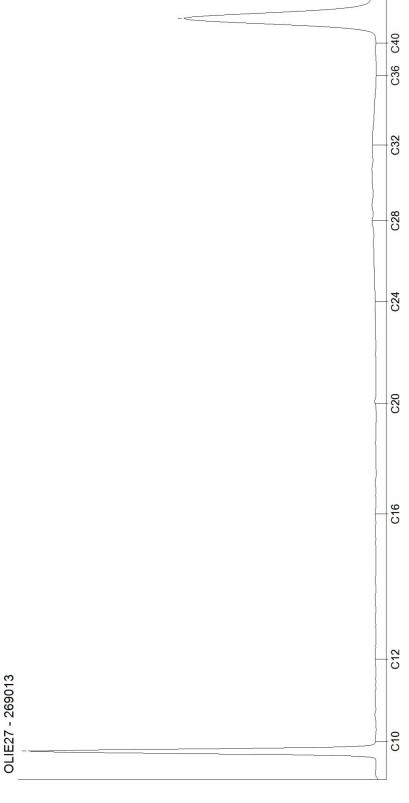

CHROMATOGRAM for Order No. 1148140, Analysis No. 269006, created at 22.04.2022 09:36:17 Nom d'échantillon: S22 (0,0-0,2 m)

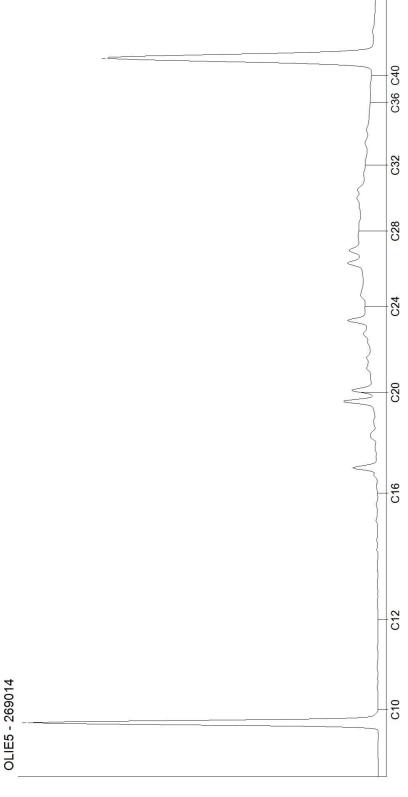

CHROMATOGRAM for Order No. 1148140, Analysis No. 269007, created at 25.04.2022 06:33:53 Nom d'échantillon: S22 (0,2-0,6 m)

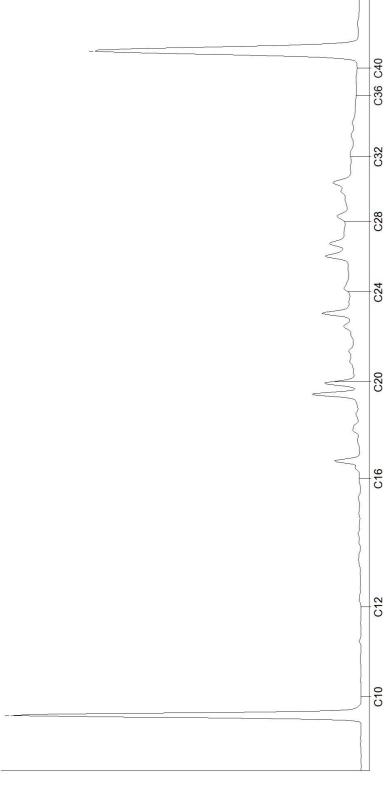

CHROMATOGRAM for Order No. 1148140, Analysis No. 269008, created at 25.04.2022 06:24:20 Nom d'échantillon: S22 (0,6-1,0 m)

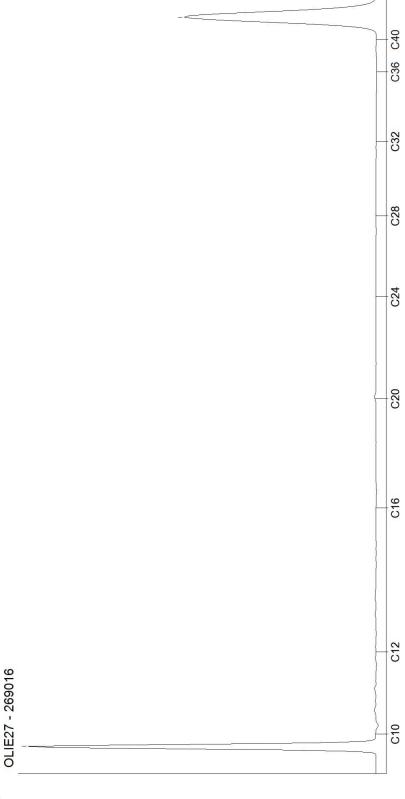

CHROMATOGRAM for Order No. 1148140, Analysis No. 269009, created at 25.04.2022 07:32:52 Nom d'échantillon: S23 (0,0-0,3 m)

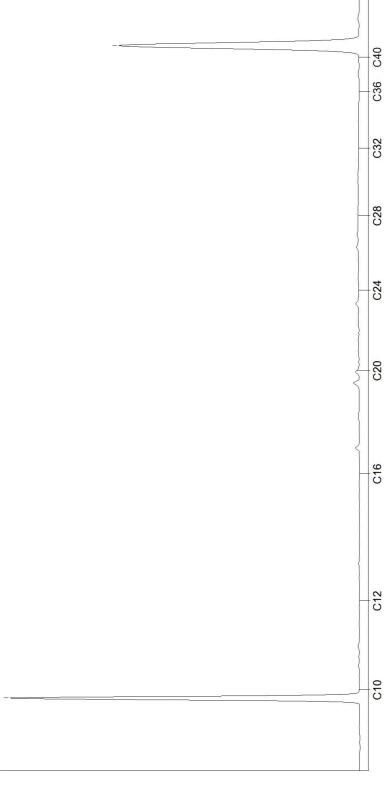

CHROMATOGRAM for Order No. 1148140, Analysis No. 269010, created at 25.04.2022 06:33:53 Nom d'échantillon: S23 (0,3-0,5 m)


CHROMATOGRAM for Order No. 1148140, Analysis No. 269011, created at 25.04.2022 06:24:20 Nom d'échantillon: S23 (0,5-1,0 m)

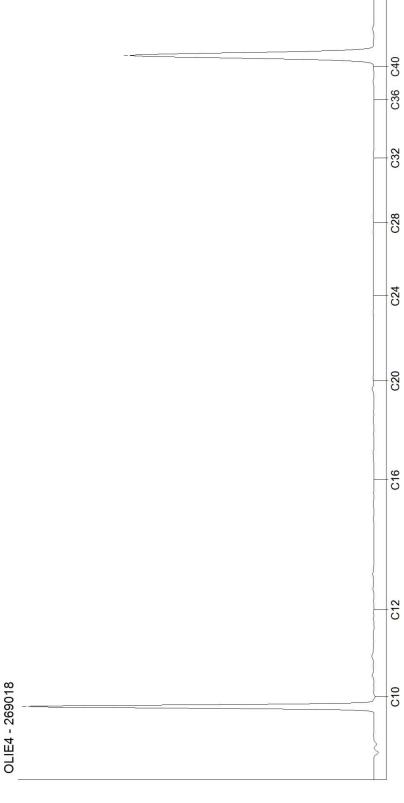

CHROMATOGRAM for Order No. 1148140, Analysis No. 269012, created at 25.04.2022 06:24:20 Nom d'échantillon: S23 (1,0-1,5 m)


CHROMATOGRAM for Order No. 1148140, Analysis No. 269013, created at 24.04.2022 15:30:27 Nom d'échantillon: S24 (0,0-0,1 m)

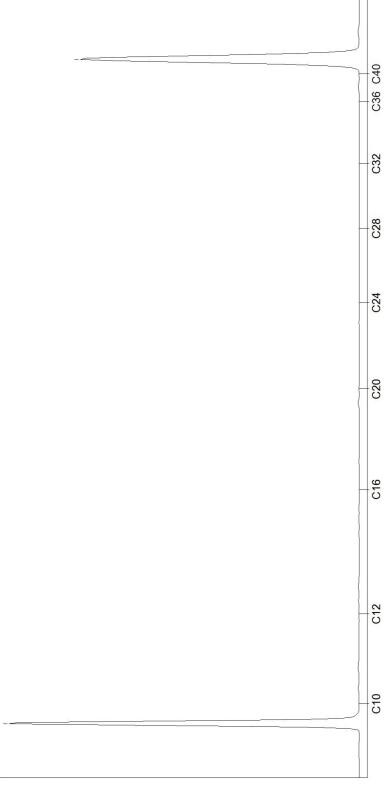

CHROMATOGRAM for Order No. 1148140, Analysis No. 269014, created at 25.04.2022 06:33:53 Nom d'échantillon: S24 (0,1-0,3 m)


CHROMATOGRAM for Order No. 1148140, Analysis No. 269015, created at 25.04.2022 06:42:50 Nom d'échantillon: S24 (0,3-0,6 m)

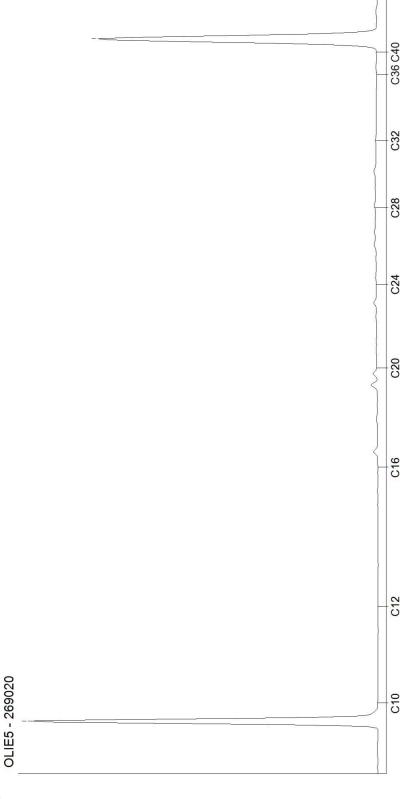
CHROMATOGRAM for Order No. 1148140, Analysis No. 269016, created at 24.04.2022 15:30:27 Nom d'échantillon: S24 (0,6-1,0 m)

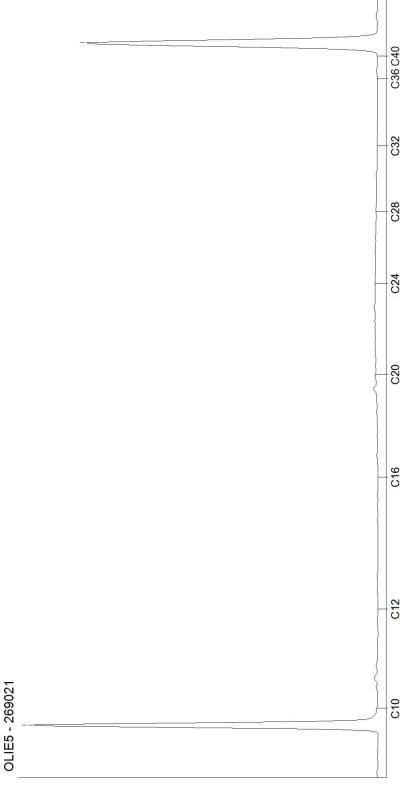


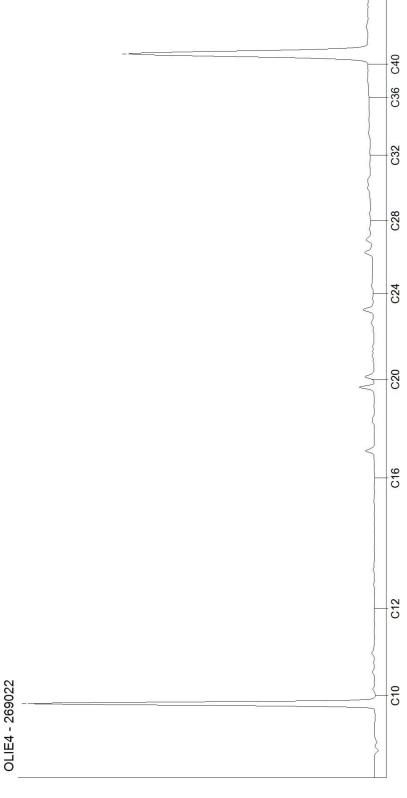
CHROMATOGRAM for Order No. 1148140, Analysis No. 269017, created at 25.04.2022 07:32:52 Nom d'échantillon: S25 (0,1-0,5 m)

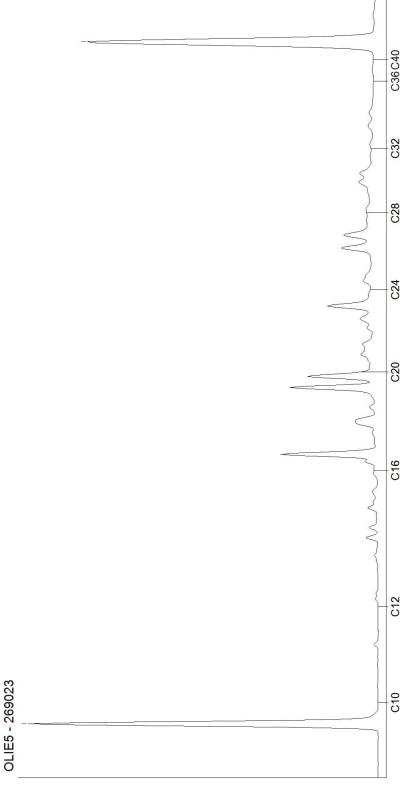


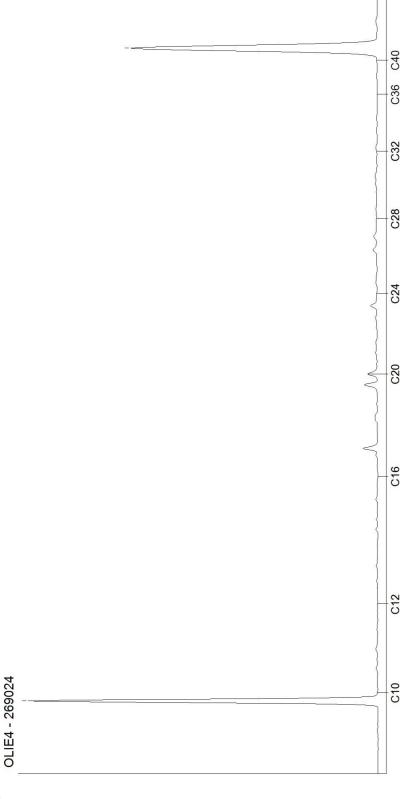
OLIE4 - 269017


CHROMATOGRAM for Order No. 1148140, Analysis No. 269018, created at 22.04.2022 09:36:17 Nom d'échantillon: S25 (0,5-0,8 m)

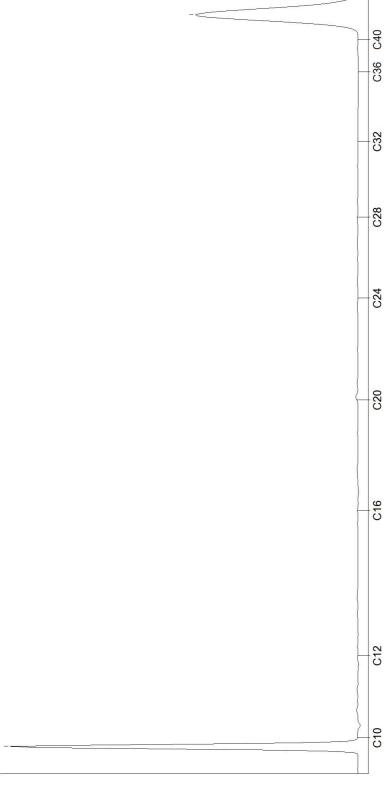

CHROMATOGRAM for Order No. 1148140, Analysis No. 269019, created at 25.04.2022 06:33:53 Nom d'échantillon: S25 (0,8-1,2 m)


CHROMATOGRAM for Order No. 1148140, Analysis No. 269020, created at 25.04.2022 06:24:20 Nom d'échantillon: S26 (0,3-0,7 m)

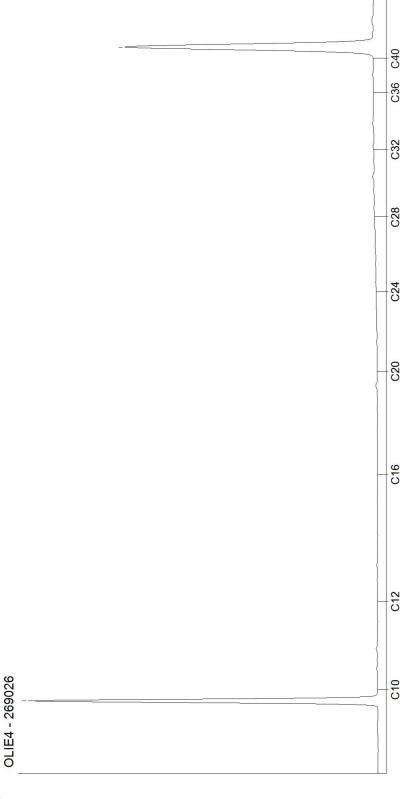

CHROMATOGRAM for Order No. 1148140, Analysis No. 269021, created at 25.04.2022 06:24:20 Nom d'échantillon: S26 (0,7-1,0 m)


CHROMATOGRAM for Order No. 1148140, Analysis No. 269022, created at 22.04.2022 09:36:17 Nom d'échantillon: S27 (0,3-0,9 m)

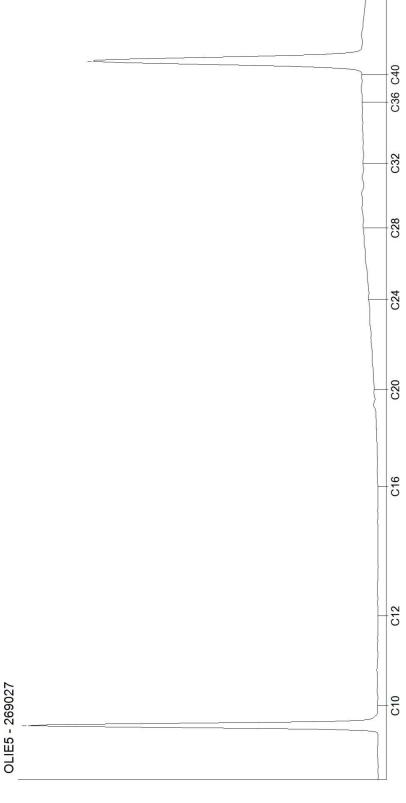
CHROMATOGRAM for Order No. 1148140, Analysis No. 269023, created at 25.04.2022 06:24:21 Nom d'échantillon: S28 (0,0-0,7 m)


CHROMATOGRAM for Order No. 1148140, Analysis No. 269024, created at 25.04.2022 07:32:52 Nom d'échantillon: S28 (0,7-1,0 m)

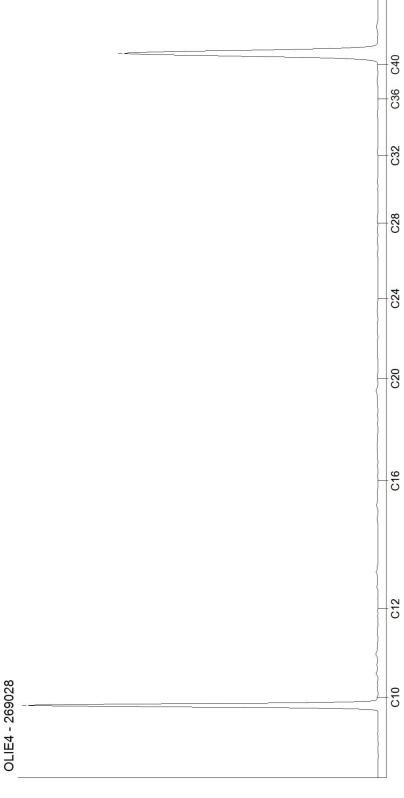
AL-West B.V.
Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

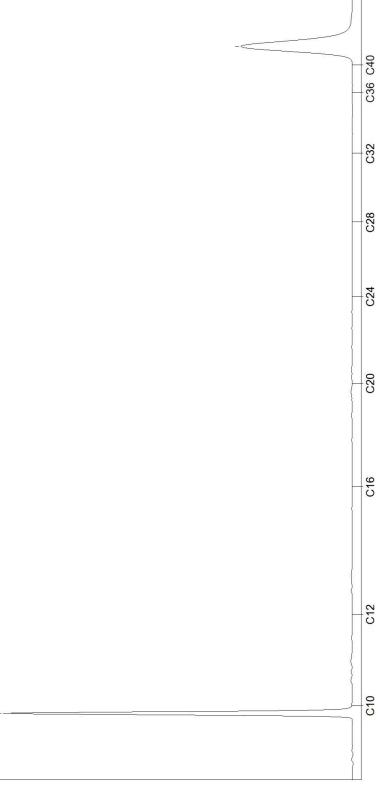

e-Mail: info@al-west.nl, www.al-west.nl

CHROMATOGRAM for Order No. 1148140, Analysis No. 269025, created at 24.04.2022 15:30:27 Nom d'échantillon: S28 (1,0-2,0 m)

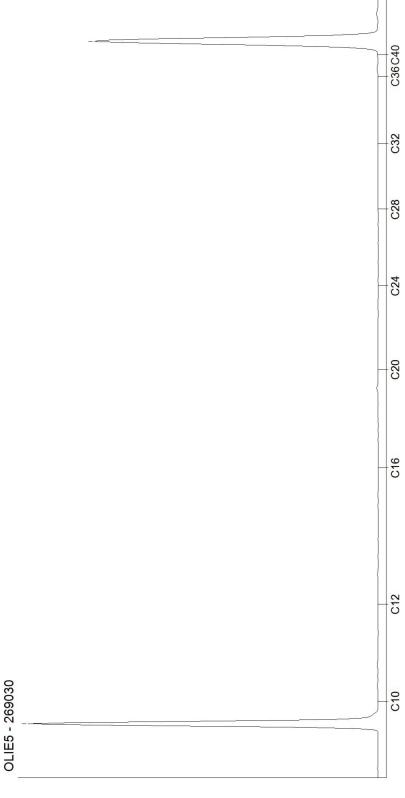


OLIE27 - 269025


CHROMATOGRAM for Order No. 1148140, Analysis No. 269026, created at 25.04.2022 07:32:52 Nom d'échantillon: \$29 (0,00-1,00 m)


CHROMATOGRAM for Order No. 1148140, Analysis No. 269027, created at 25.04.2022 06:33:53 Nom d'échantillon: S29 (1,00-1,55 m)

CHROMATOGRAM for Order No. 1148140, Analysis No. 269028, created at 25.04.2022 07:32:52 Nom d'échantillon: S30 (0,0-0,4 m)



CHROMATOGRAM for Order No. 1148140, Analysis No. 269029, created at 25.04.2022 07:08:47 Nom d'échantillon: S30 (0,4-1,0 m)

OLIE4 - 269029

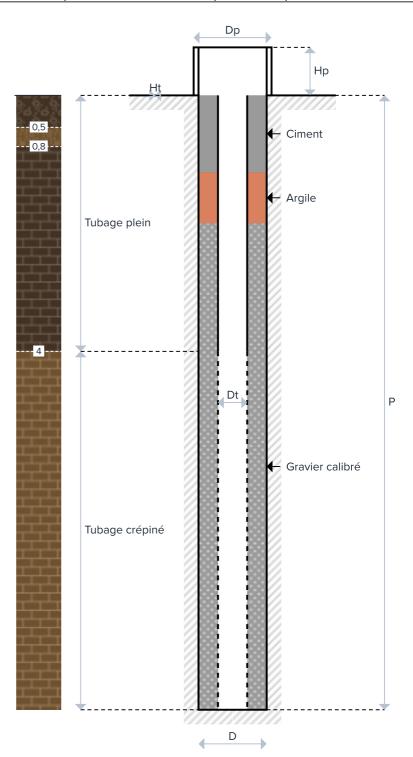
CHROMATOGRAM for Order No. 1148140, Analysis No. 269030, created at 25.04.2022 06:24:21 Nom d'échantillon: S30 (1,0-2,0 m)

ANNEXE 8: COUPES DES PIEZOMETRES

Cette annexe contient 6 pages

Le géo-référencement des ouvrages, la gestion des cuttings et des rebouchages, le protocole de prélèvement, la date d'envoi des échantillons et les conditions de transport sont indiqués dans le rapport.

Longitude (WGS84) Latitude (WGS84) Elévation Prof. atteinte Niveau d'eau
Début Fin Machine Opérateur 1/04/2022 14:20 11/04/2022 15:00 Brice TOUSSAINT Conditions météorologiques Flaconnage Préleveur Non renseigné Non renseigné Callloux sableux brun à marron 0,5 m Sable graveleux marron 0,8 m Calcaire altéré beige progressivement brun en profondeur
Mod/2022 14:20 Mod/2022 15:00 Brice TOUSSAINT
Conditions météorologiques Flaconnage Préleveur
Non renseigné Description
Description Calloux sableux brun à marron 0.5 m Sable graveleux marron 0.8 m Calcaire altéré beige progressivement brun en profondeur 4 m
Cailloux sableux brun à marron 0,5 m Sable graveleux marron 0,8 m Calcaire altéré beige progressivement brun en profondeur 4 m
Sable graveleux marron 0,8 m Calcaire altéré beige progressivement brun en profondeur 4 m 4 m
Calcaire altéré beige progressivement brun en profondeur 4 m
Calcaire altéré beige progressivement brun en profondeur 3 4 m
6 Calcaire altéré marron avec grave
9 9,6 m
5,0 11
Les paramètres analysés sont indiqués dans le rapport
www.soilcloud.fr



MAIRIE DE PORT DE BOUC

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

Angle | Prof. atteinte Longitude (WGS84) Latitude (WGS84) Elévation Niveau d'eau PZ1 4,976455100 ☐ Néant ☐ Non mesuré ☐ En cours de forage 43,402682100 Non renseigné 0,0° 9,6 m ☐ Stabilisé ☐ Non stabilisé ☑ Sec Opérateur Brice TOUSSAINT Fin Début Machine Données Туре PZO-PZ1 11/04/2022 14:20:00 11/04/2022 15:00:00 Piézomètre ouvert

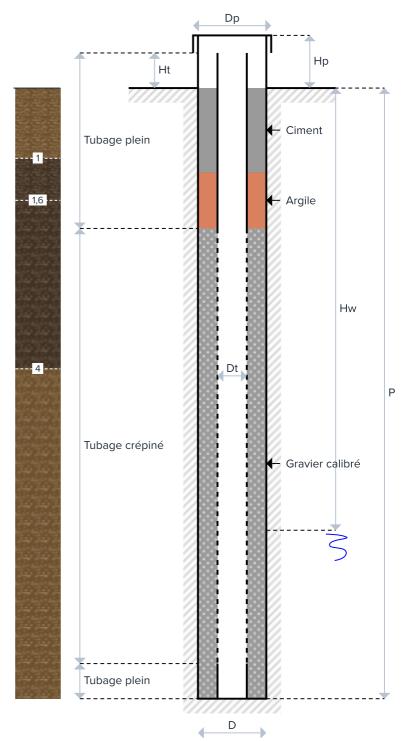
Prof.	Р	9,6	m
Diamètre	D	51,0	mm
Niveau d'eau			
En cours de forage	H _w	-	m
Après équipement	H_{w}	-	m
Tube			
☑ PVC			
Diamètre intérieur	D _t	51,0	mm
Diamètre extérieur	D _t	60,0	mm
Crépines	Fente	1,0	mm
	De 4,0	à 9,6	m
Développement	✓ Oui		
Bouchon de fond	✓ Oui		
Hauteur hors sol	H _t	0,0	m
Mise en place			
Bouchon d'argile	De 1,2	à 2,0	m
Hauteur cimentation	De 0,0	à 1,2	m
Gravier calibré – / – mm	De 2,0	à 9,6	m
Chaussette	De - à	-	m
Protection			
Tête métallique	× Non		
Cadenas	× Non		
Bouche à clef	☑ Oui		
Regard béton	× Non		
Diamètre protection	D _p	-	mm
Hauteur hors sol	Hp	0,0	m
Réception Piézomètre			
Profondeur Eau - Début réception		-	m
Profondeur Eau - Fin réception		-	m
Durée réception			h

f		das		MAIRIE	DE PORT DE	BOUC		(N° Projet: PR.69EN.22 PORT DE BOUC	2.0018)
	Long	itude (WGS84)	Latitude	e (WGS84)	Elévation	Prof. atteinte	Niveau d'eau		
PZ2		5084200	43,4019		Non renseigné	8,7 m	☐ Néant ☐ Nor ☐ Stabilisé ☐ N	n mesuré 🗹 En cours de forage Non stabilisé 🗌 Sec	
Début	•		Fin			Machine	•	Opérateur	
11/04/2			11/04	1/2022 16:00	1			Brice TOUSSAINT	
		étéorologiques				Flaconnage	,	Préleveur	
Non re	nseign	e 				Non renseigné	<u> </u>	Non renseigné	T
	Lithologie								Niveau d'eau
Prof.	Ľ					Description			N N
0		Sable marron avec gr	ave (caillout	tis (remblais))					
		Sable brun avec grav	е						
8									
43		1,6 m							-
2		Sable limoneux brun	avec grave	(calcaire altéré)					
3									
		4 m							
4									
5									
6		Sable limoneux marro	on (calcaire a	altéré)					6,3 m
									3,5 111
7									
,									
8									
		8,7 m							
Les par	ramètre	es analysés sont ir	ndiqués d	lans le rappo	rt				

www.soilcloud.fr

MAIRIE DE PORT DE BOUC

(N° Projet: PR.69EN.22.0018) PORT DE BOUC


PZ2 Longitude (WGS84) Latitude (WGS84) Elévation Angle Prof. atteinte Niveau d'eau

4,976084200 43,401918700 Non renseigné 0,0° 8,7 m Néant Non mesuré ☑ En cours de forage
☐ Stabilisé ☐ Non stabilisé ☐ Sec

Données Type Début Fin Machine Opérateur

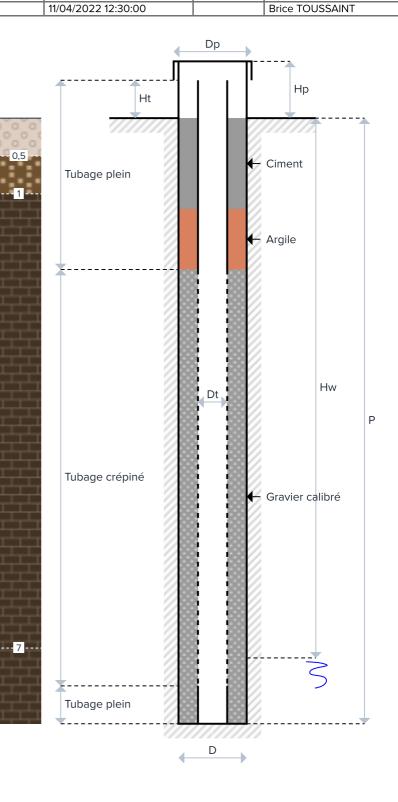
Donnees	Type	Debut	Fin	Machine	Operateur
PZO-PZ2	Piézomètre ouvert	11/04/2022 15:15:00	11/04/2022 16:00:00		Brice TOUSSAINT

Sondage			
Prof.	Р	8,7	m
Diamètre	D	51,0	mm
Niveau d'eau			
En cours de forage	H_{w}	-	m
Après équipement	H_{w}	6,3	m
Tube			
☑ PVC			
Diamètre intérieur	D_{t}	51,0	mm
Diamètre extérieur	D_{t}	60,0	mm
Crépines	Fente	-	mm
	De - 8	à -	m
Développement	☑ Oui		
Bouchon de fond	☑ Oui		
Hauteur hors sol	H _t	-	m
Mise en place			
Bouchon d'argile	De 1,2	à 2,0	m
Hauteur cimentation	De 0,0	à 1,2	m
Gravier calibré – / – mm	De 2, 0	à 8,7	m
Chaussette	De - 8	à -	m
Protection			
Tête métallique	× Non		
Cadenas	■ Non		
Bouche à clef	☑ Oui		
Regard béton	■ Non		
Diamètre protection	Dp	-	mm
Hauteur hors sol	Hp	-	m
Réception Piézomètre			
Profondeur Eau - Début réception			m
Profondeur Eau - Fin réception		-	m
•			

f		Idas		MAIRIE	DE PORT DE	BOUC		(N° Projet: PR.69EN.2 PORT DE BOUC	2.0018)
	Long	itude (WGS84)	Latitude	(WGS84)	Elévation	Prof. atteinte	Niveau d'eau		
PZ3		5785500	43,4018		Non renseigné	8,0 m	☐ Néant ☐ No ☐ Stabilisé ☐ N	n mesuré ☑ En cours de forage Non stabilisé □ Sec	÷
Début			Fin		<u>'</u>	Machine		Opérateur	
11/04/2			11/04	4/2022 12:30)			Brice TOUSSAINT	
		étéorologiques				Flaconnage		Préleveur	
Non re	nseigne	ė 				Non renseigné	!	Non renseigné	
	Ψ								l'eau
Prof.	Lithologie					Description			Niveau d'eau
0	0.0					Description			
0	000	Cailloux clair (beige)							
	0 0	0,5 m							_
	':':	Sable marron grossie	er et grave						
	••••	1 m							
1	44								
	ĻŢ,								
	二								
	亡								
2	┵┵								
_	77								
	祌								
	士士								
	44								
3	44								
	中二								
	Ė.								
	규	Calcaire altéré beige	progressive	ment brun en pi	rofondeur				
4	ŢŢ.								
	=								
	44								
5	44								
	中二								
	亡二								
	+++								
6	祌								
	二二								
	二二								
7	++	7 m							
'	二二								7,13 m
	\pm	Calcaire altéré brun à	à marron						
	44	8 m							
8									
Lecha	ramètro	es analysés sont ir	ndiaués d	lans la ranno	ort				
			idiques 0	ians ie rappo	// (
www.se	oilcloud	d.fr							

Piézomètre ouvert

PZO-PZ3


MAIRIE DE PORT DE BOUC

11/04/2022 11:30:00

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

Angle | Prof. atteinte Longitude (WGS84) Latitude (WGS84) Elévation Niveau d'eau PZ3 4,976785500 43,401878500 ☐ Néant ☐ Non mesuré ☑ En cours de forage Non renseigné 0,0° 8,0 m ☐ Stabilisé ☐ Non stabilisé ☐ Sec Début Machine Opérateur Données Type Fin

Prof.	Р	8,0	m
Diamètre	D	51,0	mm
Niveau d'eau			
En cours de forage	H _w	-	m
Après équipement	H _w	7,13	m
Tube			
☑ PVC			
Diamètre intérieur	Dt	51,0	mm
Diamètre extérieur	Dt	60,0	mm
Crépines	Fente	-	mm
	De - à	-	m
Développement	✓ Oui		
Bouchon de fond	☑ Oui		
Hauteur hors sol	Ht	-	m
Mise en place			
Bouchon d'argile	De 1,2	à 2,0	m
Hauteur cimentation	De 0,0	à 1,2	m
Gravier calibré – / – mm	De 2,0	à 8,0	m
Chaussette	De - à	-	m
Protection			
Tête métallique	× Non		
Cadenas	× Non		
Bouche à clef	☑ Oui		
Regard béton	× Non		
Diamètre protection	D _p	-	mn
Hauteur hors sol	Hp	-	m
Réception Piézomètre			
Profondeur Eau - Début réception		-	m
Profondeur Eau - Fin réception		-	m
Durée réception			h

ANNEXE 9: FICHES DE PRELEVEMENT DES EAUX SOUTERRAINES

Cette annexe contient 3 pages

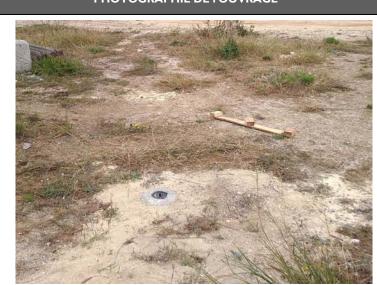
FICHE DE PRELEVEMENT DES EAUX SOUTERRAINES

Désignation de l'ouvrage

PZI

# LIVVIICO	MACMENT									
Client				Mairie de Port de Bouc			Date de prélèver	nent	20/04	1/2022
/ille				Port de Bouc			Coordonnées			
Adresse				Place des Aigues Douces			X (m) - WGS84 (EPSC	5:4326)	4.976	4551
Chef de projet				Véronique LAGNEAU			Y (m) - WGS84 (EPSG:4326)		43.4026821	
N°Affaire				PR.69EN.22.0018			Opérateur Eliès A			ARIKA
			CA	RACTERISTIQUES TE	CHNIQ	UES DE L'	OUVRAGE			
Гуре d'ouvrage		Piézo	mètre		A sec	m / repère	Protection de surf	ace	Tête ra	s du sol
Nature du repère	е	S	ol	Niveau piézométrique	-	m	Cimentation de l'o	ouvrage	Bon	état
Cote du repère		100.00	m	Profondeur de l'ouvrage	9.60	m / repère	Type de revêteme	ent	Au	cun
ð intérieur de l'o	ouvrage	51	mm	Hauteur colonne d'eau	-	m	Etat de l'ouvrage		Bon étai	t général
Hauteur du repè	re	0.00	m / sol	Vol.d'eau dans l'ouvrage	-	L		MESURES PRI	LIMINAIRES	
Position des crépines 4,0-9,6 m / repère		Vol. min à purger	-	L	Mesure PID		0	ppmV		
			U PRELEVEMENT			Flottant (LNAPL)		Non	Aucun	
Prélèvement de l'ouvrage 🔲 OUI 🗹 NON		✓ NON	Purge de l'ouvrage	OUI	✓ NON	Plongeant (DNAP	L)	Non	Aucun	
Référence sonde			3ELY.B.14	F	léférence PID			3ELY.A.17		
				PURGE DI	E L'OUV	RAGE				
Outil de purge				-			Durée de purge		-	min
		Stabilisation	des paramètres physico-chimiques			Débit de purge		-	L/min	
Positionnement de la pompe - m / repère		Fixe			Volume purgé		-	L		
				SUIVI D	E LA PURC	E				
Temps de pompage	Niveau d'eau	Débit de pompage	Volume purgé	Observations organoleptiques	Cond. à 25°C	рН	MES	Potentiel redox	Oxygène dissous	Température
min	m/repère	L/min	L	-	μS/cm	-	-	mV	mgO ₂ /I	°C
-	-	-	-	-	-	-	-	-	-	-
Référence Pomp	e		-	Référence sonde multi paramètres -			Référence du filtre charbon actif -			
				PRELEVEMEN	T DE L'	OUVRAGE				
Choix de l'outil d	le prélèvement			Absence de prélèveme	nt		Débit de prélève	ment	-	l/min
Référence mater	iel		-				Positionnem	ent de l'outil		
Duvrage prélevé	précédemment	avec la pom _i	pe	-			1 Ositionnem	ent de l'outil	-	
				OBSE	RVATIONS					
				Piézo	omètre sec					
		PLAN	DE SITUATI	ON			РНОТО	GRAPHIE DE I'O	UVRAGE	
N										-101 A
Ä		C. L.A.		-			The state of the s	osera.		
		di.	-							

	CONDITIONNEMENT, CONSERVATION ET TRANSPORT									
Type de flaconnage	-	Filtration sur site	OUI	NON	Laboratoire	-				
Analyses effectuées	-	Conditionnement		-	Expédié le	-				
		Date de réception labo	-		T° de réception	-				


FICHE DE PRELEVEMENT DES EAUX SOUTERRAINES

Désignation de l'ouvrage

PZ2

	PLAN	DE SITUATI	ION			РНОТО	GRAPHIE DE l'O	UVRAGE	
				<u>-</u>					
			OBSE						
20/07/2022	121120	Jans	beige	RVATIONS	ı	-	-	-	16.00
Date 20/04/2022	Heure 12h20	Odeur Sans	Couleur	25°C μS/cm	7.3	-	mV -	mgO ₂ /I	°C
				Cond. à	GE pH	MES	Potentiel redox	Oxygène dissous	Température
levé précédemment	avec la pom	pe	-						
ateriel		3ELY.B.10	· -			Positionnem	nent de l'outil	8	m
util de prélèvement			Pompe sur batterie 12	٧		Débit de prélève	ement	9	l/min
			PRELEVEMEN	T DE L'	OUVRAGE				
ompe	3EL'	7.B.10	Référence sonde multi paramètres	31	ELY.B.II	Référence du filtre charbon actif		3ELY.B.13	
-	-	16.00	-	1983	7.2	-	-	-	18.7
-	-	13.00	-	1888	7.2	-	-	-	18.7
-	-	11.00	-	1878	7.2	-	-	-	18.5
m/repère -	9.00	9.00	-	μ3/CIII 1664	6.9	-	- mv	mgO ₂ /I	18.5
Niveau d'eau	pompage L/min	purgé	Observations organoleptiques	25°C μS/cm	pH	MES	Potentiel redox	Oxygène dissous	Température °C
	Débit de	Volume	SUIVI D	E LA PURO Cond. à	GE .				
ent de la pompe	0.10	пт тереге		FIA BUE		, oranie par ge		10.00	L .
t de la purge ent de la pompe	8.10	m / repère	Fixe			Volume purgé		16.00	L/min L
ge t de la purge	Pompe I2V		Pompe 12V des paramètres physico-chimiques			Durée de purge Débit de purge		9.00	min L/min
			PURGE DE	L'OUV	/RAGE	Dunés de la		. 7777	
rence sonde			3ELY.B.14	F	Référence PID	-		3ELY.A.17	
t de l'ouvrage	☑ oui	NON	Purge de l'ouvrage	✓ OUI	NON	Plongeant (DNAF	PL)	Non	Aucun
F			U PRELEVEMENT	11.02		Flottant (LNAPL)	•	Non	Aucun
repère crépines	4.50 - 8.70	m / sol m / repère	Vol.d'eau dans l'ouvrage Vol. min à purger	10.32	L	Mesure PID	FILSURES PR		ppmV
de l'ouvrage	0.00	mm m / sel	Hauteur colonne d'eau	3.44	m L	Etat de l'ouvrage	MESURES PR		. general
ère	99.65	m	Profondeur de l'ouvrage	1.69	m / repère	Type de revêteme	ent	Aucun Bon état général	
epère		iol		92.70	m	Cimentation de l'ouvrage		Bon état	
Type d'ouvrage		mètre	Niveau piézométrique	6.95	m / repère	Protection de surface			s du sol
		CA	RACTERISTIQUES TE	CHNIQ	UES DE L	'OUVRAGE			
			PR.69EN.22.0018			Opérateur		Eliès ARIKA	
et			Véronique LAGNEAU			Y (m) - WGS84 (EPS6	G:4326)	43.40192	
			Place des Aigues Douces			X (m) - WGS84 (EPS	G:4326)	4.97608	
			Port de Bouc			Coordonnées		l	
			Mairie de Port de Bouc			Date de prélève	ment	20/04	/2022
				Port de Bouc	Port de Bouc	Port de Bouc	Port de Bouc Coordonnées	Port de Bouc Coordonnées	Port de Bouc Coordonnées

	CONDITIONNEMENT, CONSERVATION ET TRANSPORT								
Type de flaconnage	Conforme laboratoire	Filtration sur site	OUI NON	Laboratoire	AGROLAB				
Analyses effectuées	cf. commande	Conditionnement Glacière réfrigérée		Expédié le	20/04/2022				
		Date de réception labo	c.f bordereau d'analyse	T° de réception	c.f bordereau d'analyse				

FICHE DE PRELEVEMENT DES EAUX SOUTERRAINES

Désignation de l'ouvrage

PZ3

# ENVIRO	MMEMENT									
Client				Mairie de Port de Bouc			Date de prélève	ment	20/04	1/2022
/ille				Port de Bouc	Coordonnées					
Adresse				Place des Aigues Douces			X (m) - WGS84 (EPS	G:4326)	4.97	7679
Chef de projet				Véronique LAGNEAU	Y (m) - WGS84 (EPS	G:4326)	43.40188			
N°Affaire				PR.69EN.22.0018			Opérateur		Eliès A	ARIKA
			CA	RACTERISTIQUES TE	CHNIC	QUES DE L'	'OUVRAGE			
Гуре d'ouvrage		Piézo	omètre	Nivosu niázamátniaus	6.97	m / repère	Protection de sur	face	Tête ra	ıs du sol
Nature du repère Sol			Sol	Niveau piézométrique	92.74	m	Cimentation de l'	ouvrage	Bon	état
Cote du repère		99.71	m	Profondeur de l'ouvrage	7.90	m / repère	Type de revêteme	ent	Au	cun
ð intérieur de l'	ouvrage	51	mm	Hauteur colonne d'eau	0.93	m	Etat de l'ouvrage		Bon étai	t général
Hauteur du repé	ère	0.00	m / sol	Vol.d'eau dans l'ouvrage	1.90	L		MESURES PR	ELIMINAIRES	
Position des cré	pines	4.00 - 7.90	m / repère	Vol. min à purger	5.70	L	Mesure PID		0	ppmV
		VAL	IDATION D	U PRELEVEMENT			Flottant (LNAPL))	Non	Aucun
Prélèvement de	l'ouvrage	✓ oui	NON	Purge de l'ouvrage	☑ oui	NON	Plongeant (DNAF	PL)	Non	Aucun
Référen	ce sonde			3ELY.B.14	l	Référence PID			3ELY.A.17	
				PURGE DI	E L'OUY	VRAGE				
Outil de purge								2.27	min	
Mode d'arrêt de	la purge		Stabilisation	des paramètres physico-chimiques			Débit de purge		9.00	L/min
Positionnement	<u> </u>	7.40	m / repère	Fixe		-	Volume purgé		20.43	L
				SHIVE	DE LA PUR	GE				
Temps de	Niveau d'eau	Débit de	Volume	Observations organoleptiques	Cond. à	рН	MES	Potentiel redox	Oxygène dissous	Température
pompage min	m/repère	pompage L/min	purgé L	-	μS/cm	-	-	mV	mgO ₂ /I	°C
	-	9.00	1.00	-	1155	7,16	-	-	-	17.00
1.5	-	-	13.00	-	1227	7.50	-	-	-	16.90
4	7.3	_	16.00	-	1296	7.33	-	-	_	16.90
7	-	_	20.50	-	1304	7.38	-	-	-	16.80
Référence Pomp	pe	3EL*	Y.B.10	Référence sonde multi paramètres	3	ELY.B.II	Référence du fil	tre charbon actif	3ELY	ſ.B.13
				PRELEVEMEN		OUVRAGE				
	de prélèvement		251 7 5 10	Pompe sur batterie 12	. V		Débit de prélève	ement	9	l/min
Référence mate			3ELY.B.10	10.70			Positionnen	nent de l'outil	7	m
Duvrage preleve	é précédemment	avec la pom	pe	PZ2						
				ECHAN	TILLONNA	AGE				
Réf. de	.		6:		Cond. à 25°C	рН	MES	Potentiel redox	Oxygène dissous	Température
l'échantillon	Date	Heure	Odeur	Couleur	μS/cm		-	mV	mgO ₂ /I	°C
PZ3	20/04/2022	13h30	Sans	beige	1327	7.5	-	-	-	16,9
					RVATION	S				
					_					
		PLAN	DE SITUAT	ON			РНОТО	GRAPHIE DE I'O	UVRAGE	
×	国宝女士政治	9366							in the second	E
	1	20		PERSONAL PROPERTY.						

CONDITIONNEMENT, CONSERVATION ET TRANSPORT							
Type de flaconnage	Conforme laboratoire	Filtration sur site	OUI NON	Laboratoire	AGROLAB		
Analyses effectuées	cf. commande	Conditionnement	Glacière réfrigérée	Expédié le	20/04/2022		
		Date de réception labo	c.f bordereau d'analyse	T° de réception	c.f bordereau d'analyse		

ANNEXE 10: BORDEREAUX D'ANALYSES DES ESSAIS EN LABORATOIRE SUR LES EAUX SOUTERRAINES

Cette annexe contient 7 pages

Tel. +31(0)570 788110

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands e-Mail: info@al-west.nl, www.al-west.nl

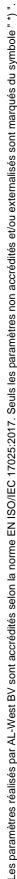
FONDASOL Environnement (69) Adresse agence 106 avenue Franklin Roosevelt 69120 VAULX-EN-VELIN **FRANCE**

> Date 25.04.2022 N° Client 35008582 N° commande 1149265

RAPPORT D'ANALYSES

n° Cde 1149265 Eau

Client 35008582 FONDASOL Environnement (69) Référence PR.69EN.22.0018-TUR - PO.69EN.22.0107


Date de validation 21.04.22 Prélèvement par: Client

Madame, Monsieur

A réception, la température de l'enceinte de vos échantillons était supérieure à 8°C. Ceci peut affecter la fiabilité de certains résultats.

Respectueusement,

AL-West B.V. Mme Delphine Colin, Tel. +33/380681935 Chargée relation clientèle

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1149265 Eau

N° échant. Nom d'échantillon Prélèvement Site du prélèvement 275379 PZ2 20.04.2022 275380 PZ3 20.04.2022

	Unité	275379 PZ2	275380 PZ3
Prétraitement pour analyses des	s métaux		
Filtration métaux		++	++
Métaux			
Arsenic (As)	μg/l	<5,0	<5,0
Cadmium (Cd)	μg/l	<0,10	<0,10
Chrome (Cr)	μg/l	<2,0	<2,0
Cuivre (Cu)	μg/l	<2,0	<2,0
Mercure	μg/l	<0,030	<0,030
Nickel (Ni)	μg/l	<5,0	<5,0
Plomb (Pb)	μg/l	<5,0	<5,0
Zinc (Zn)	μg/l	3,8	7,1
HAP			
Naphtalène	μg/l	<0,02	<0,02
Acénaphtylène	μg/l	<0,050	<0,050
Acénaphtène	μg/l	<0,01	<0,01
Fluorène	μg/l	<0,010	<0,010
Phénanthrène	μg/l	<0,010	<0,010
Anthracène	μg/l	<0,010	<0,010
Fluoranthène	μg/l	0,011	<0,010
Pyrène	μg/l	0,019	0,012
Benzo(a)anthracène	μg/l	<0,010	<0,010
Chrysène	μg/l	<0,010	<0,010
Benzo(b)fluoranthène	μg/l	<0,010	<0,010
Benzo(k)fluoranthène	μg/l	<0,01	<0,01
Benzo(a)pyrène	μg/l	<0,010	<0,010
Dibenzo(ah)anthracène	μg/l	<0,010	<0,010
Benzo(g,h,i)pérylène	μg/l	<0,010	<0,010
Indéno(1,2,3-cd)pyrène	μg/l	<0,010	<0,010
Somme HAP	μg/l	0,011 ^{x)}	n.d.
Somme HAP (VROM)	μg/l	0,011 ^{x)}	n.d.
Somme HAP (16 EPA)	μg/l	0,030 ^{x)}	0,012 ×)
Composés aromatiques			
Benzène	μg/l	<0,2	<0,2
Toluène	μg/l	<0,5	<0,5
Ethylbenzène	μg/l	<0,5	<0,5

Benzène	μg/l	<0,2	<0,2
Toluène	μg/l	<0,5	<0,5
Ethylbenzène	μg/l	<0,5	<0,5

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole " *) ".

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

n° Cde 1149265 Eau

	Unité	275379 PZ2	275380 PZ3
Composés aromatiques			
m,p-Xylène	μg/l	<0,2	<0,2
o-Xylène	μg/l	<0,50	<0,50
Somme Xylènes	μg/l	n.d.	n.d.
СОНУ			
Dichlorométhane	μg/l	<0,5	<0,5
Tétrachlorométhane	μg/l	<0,1	<0,1
Trichlorométhane	μg/l	<0,5	<0,5
1,1-Dichloroéthane	μg/l	<0,5	<0,5
1,2-Dichloroéthane	μg/l	<0,5	<0,5
1,1,1-Trichloroéthane	μg/l	<0,5	<0,5
1,1,2-Trichloroéthane	μg/l	<0,5	<0,5
1,1- Dichloroéthylène	μg/l	<0,1	<0,1
Chlorure de Vinyle	μg/l	<0,2	<0,2
cis-1,2-Dichloroéthène	μg/l	<0,50	<0,50
Trans-1,2-Dichloroéthylène	μg/l	<0,50	<0,50
Somme cis/trans-1,2- Dichloroéthylènes	μg/l	n.d.	n.d.
Trichloroéthylène	μg/l	<0,5	<0,5
Tétrachloroéthylène	μg/l	<0,1	0,2
Polychlorobiphényles			
PCB (28)	μg/l	<0,010	<0,010
PCB (52)	μg/l	<0,010	<0,010
PCB (101)	μg/l	<0,010	<0,010
PCB (118)	μg/l	<0,010	<0,010
PCB (138)	μg/l	<0,010	<0,010
PCB (153)	μg/l	<0,010	<0,010
PCB (180)	μg/l	<0,010	<0,010
Somme PCB (STI) (ASE)	μg/l	n.d.	n.d.
Somme 7 PCB (Ballschmiter)	μg/l	n.d.	n.d.
Composés volatils			
Fraction >C6-C8	μg/l	<4,0 ^{x)}	<4,0 ×
Fraction >C8-C10	μg/l	<4,0 ^{x)}	<4,0 ×
Fraction aliphatique >C6-C8	μg/l	<2,0	<2,0
Fraction aromatique >C6-C8	μg/l	<2,0	<2,0
Fraction aliphatique >C8-C10	μg/l	<2,0	<2,0
Fraction C5-C10	μg/l	<10 ^{x)}	<10 ×
Fraction aromatique >C8-C10	μg/l	<2,0	<2,0
Hydrocarbures totaux			
Hydrocarbures totaux C10-C40	μg/l	<50	<50
Fraction C10-C12	μg/l	<10 ^{*)}	<10 [*]

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1149265 Eau

	Unité	275379 PZ2	275380 PZ3
Hydrocarbures totaux			
Fraction C12-C16	μg/l	<10 ^{*)}	<10 ^{*)}
Fraction C16-C20	μg/l	< 5,0 *)	<5,0 *)
Fraction C20-C24	μg/l	< 5,0 *)	< 5 ,0 *)
Fraction C24-C28	μg/l	< 5,0 *)	<5,0 ^{*)}
Fraction C28-C32	μg/l	< 5,0 *)	< 5 ,0 *)
Fraction C32-C36	μg/l	< 5,0 *)	< 5 ,0 *)
Fraction C36-C40	μg/l	5,3 *)	<5,0 ^{*)}
Autres analyses			
Fraction aliphatique C5-C6	μg/l	<2,0	<2,0

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.
Les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que des informations sur la procédure de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Début des analyses: 21.04.2022 Fin des analyses: 25.04.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Mme Delphine Colin, Tel. +33/380681935 Chargée relation clientèle

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1149265 Eau

Liste des méthodes

Conforme à EN-ISO 10301: Dichlorométhane Tétrachlorométhane Trichlorométhane 1,1-Dichloroéthane 1,2-Dichloroéthane

1,1,1-Trichloroéthane 1,1,2-Trichloroéthane 1,1- Dichloroéthylène cis-1,2-Dichloroéthène

Trans-1,2-Dichloroéthylène Somme cis/trans-1,2-Dichloroéthylènes Trichloroéthylène Tétrachloroéthylène

Conforme à EN-ISO 11423-1: Benzène Toluène Ethylbenzène m,p-Xylène o-Xylène Somme Xylènes

Conforme à EN-ISO17294-2 (2004): Arsenic (As) Cadmium (Cd) Chrome (Cr) Cuivre (Cu) Nickel (Ni) Plomb (Pb) Zinc (Zn)

conforme à NEN-EN-ISO 12846: Mercure

conforme à NEN-EN-ISO 16558-1: Fraction aliphatique C5-C6 Fraction >C6-C8 Fraction >C8-C10 Fraction aliphatique >C6-C8

Fraction aromatique >C6-C8 Fraction aliphatique >C8-C10 Fraction C5-C10

Fraction aromatique >C8-C10

Équivalent à EN-ISO 6468: PCB (28) PCB (52) PCB (101) PCB (118) PCB (138) PCB (153) PCB (180) Somme PCB (STI) (ASE)

Somme 7 PCB (Ballschmiter)

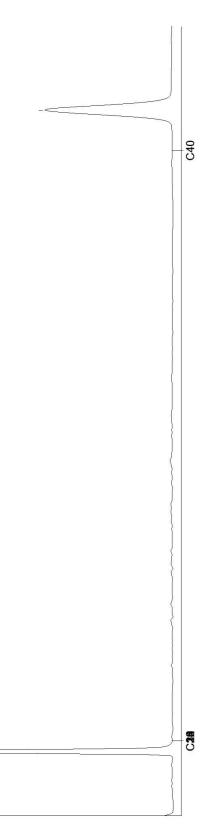
Équivalent à EN-ISO 9377-2*): Fraction C10-C12 Fraction C12-C16 Fraction C16-C20 Fraction C20-C24 Fraction C24-C28

Fraction C28-C32 Fraction C32-C36 Fraction C36-C40

Équivalent à EN-ISO 9377-2: Hydrocarbures totaux C10-C40

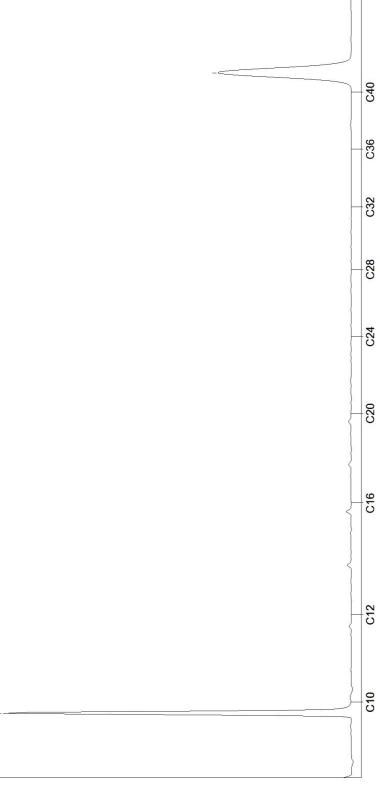
méthode interne : Naphtalène Acénaphtylène Acénaphtène Fluorène Phénanthrène Anthracène Fluoranthène Pyrène

Benzo(a)anthracène Chrysène Benzo(b)fluoranthène Benzo(k)fluoranthène Benzo(a)pyrène


Dibenzo(ah)anthracène Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène Somme HAP Somme HAP (VROM)

Somme HAP (16 EPA)

Méthode interne (mesurage conforme à EN-ISO 10301 et conforme à ISO 11423-1) : Chlorure de Vinyle


<Sans objet> : Filtration métaux

CHROMATOGRAM for Order No. 1149265, Analysis No. 275379, created at 24.04.2022 06:01:47 Nom d'échantillon: PZ2

OLIE26 - 275379

CHROMATOGRAM for Order No. 1149265, Analysis No. 275380, created at 24.04.2022 06:01:47 Nom d'échantillon: PZ3

OLIE26 - 275380

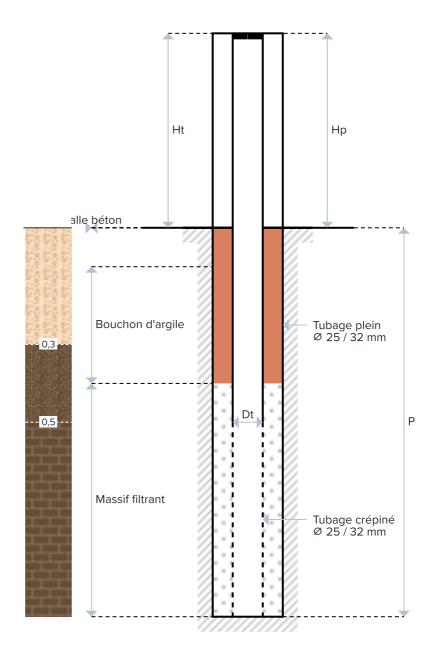
ANNEXE II: COUPE DES PIEZAIRS

Cette annexe contient 12 pages

Le géo-référencement des ouvrages, la gestion des cuttings et des rebouchages, le protocole de prélèvement, la date d'envoi des échantillons et les conditions de transport sont indiqués dans le rapport.

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

				-				PORT DE BOOC
	Longit	ude (WGS84)	Lati	tude (WGS84)	Elévation	Prof. atteinte	Niveau d'eau	
PA1	4,976	4,976539900 43,402686200		402686200	Non renseigné	1,0 m ☑ Néant ☐ ☐ Stabilisé [mesuré □ En cours de forage on stabilisé □ Sec
Début				Fin		Machine		Opérateur
12/04/2	022 15	:10		12/04/2022 15:3	0			Brice TOUSSAINT
Conditi	ons mé	téorologiques				Flaconnage		Préleveur
Non rer	nseigné	<u>.</u>				Non renseign	é	Non renseigné
O Prof.	Lithologie					Description		
0.0 - 0.0 - 0.0 -	0.0 x 0.0 x 0.0 0.0 x 0.0 x 0.0 0.0 x 0.0 x 0.0	Couche de forme gra	velo-s	sableuse beige				
		Sable brun claire ave	c grav	e				
		Calcaire enduré						
1								


Les paramètres analysés sont indiqués dans le rapport

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

	Longitud	de (WGS84)	Latitude (WGS84)	Elévation	Aı	ngle	Prof. atteinte	Niveau d'eau		
PA1	4,97653	9900	43,402686200	Non renseig	né 0,	,0°	1,0 m	☑ Néant ☐ Non mesuré ☐ En cours de fora		uré 🔲 En cours de forage
								│ 🗆 Sta	ibilisé 🔲 Non sta	abilisé 🗌 Sec
Donné	nnées Type Début F		Fin			Machine	Opérateur			
P7A-P4	11	Piézair	12/04/2022 15:10:00	04/2022 15:10:00		2022	15:30:00			Brice TOUSSAINT

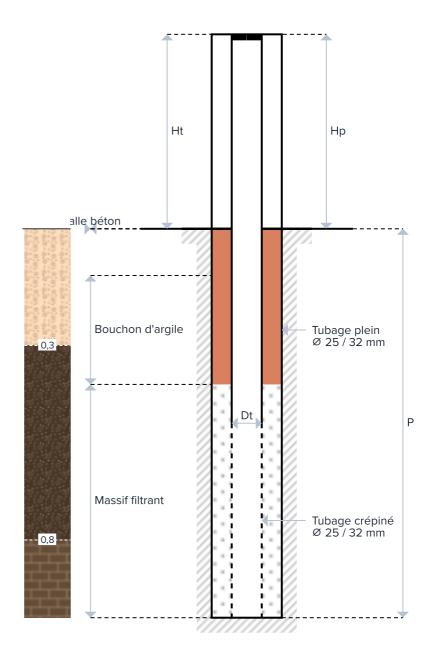
Prof.	P 1,0	m
Niveau d'eau		
En cours de forage	H _w -	m
Avant équipement	H _w -	m
Tube		
☑ PEHD		
Diamètre intérieur	D _t 25,0	mm
Diamètre extérieur	D _t 32,0	mm
Crépines	Fente 1,0	mm
	De 0,5 à 1,0	m
Développement	➤ Non	
Bouchon de fond	⋉ Non	
Hauteur hors sol	H _t -	m
Mise en place		
Dalle béton	De - à -	m
Bouchon d'argile	De 0,1 à 0,4	m
Gravier calibré – / – mm	De 0,4 à 1,0	m
Protection		
Tête métallique	■ Non	
Cadenas	■ Non	
Bouche à clef	☑ Oui	
Regard béton	■ Non	
Diamètre protection	D _p -	mm
Hauteur hors sol	H _p -	m

fo	nd	as	
		14000041	1 1

MAIRIE DE PORT DE BOUC

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

Début Fin 12/04/2022 14:40 12/04/2022 15:00 Conditions météorologiques	n renseigné 1,0 m	☑ Néant ☐ Non mesuré ☐ En cours de forage
12/04/2022 14:40 Conditions météorologiques Non renseigné Journal Description Couche de forme gravelo-sableuse beige		☐ Stabilisé ☐ Non stabilisé ☐ Sec
Non renseigné Joa Description Couche de forme gravelo-sableuse beige	Macl	hine Opérateur
Non renseigné Joa Joa Description Couche de forme gravelo-sableuse beige		Brice TOUSSAINT
Description Couche de forme gravelo-sableuse beige		onnage Préleveur
O Couche de forme gravelo-sableuse beige	Non	renseigné Non renseigné
Couche de forme gravelo-sableuse beige		Indices organoleptiques
		0,3 m
Sable graveleux brun (remblais) 0,8 m		Morceaux de gaines et ferraille 0,8 m
Calcaire		0,6 111
1 m		I


Les paramètres analysés sont indiqués dans le rapport

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

	Longitude (WGS84) Latitude (WGS84)		Elévation A		Angle	Prof. atteinte	Nivea	Niveau d'eau		
PA3	4 ,976409200		43,402533600	Non renseig	on renseigné 0,0°		1,0 m	☑ Néant ☐ Non mesuré ☐ En cours de forage		
								│□ Sta] Stabilisé □ Non stabilisé □ Sec	
Donnée	es	Туре	Début	ébut Fi					Machine	Opérateur
PZA-PA	3	Piézair	2/04/2022 14:40:00		12/0	2/04/2022 15:00:00			Brice TOUSSAINT	

Prof.	Р	1,0	m
	<u>'</u>	1,0	
Niveau d'eau			
En cours de forage	H _w	-	m
Avant équipement	H _w	-	m
Tube			
✓ PEHD			
Diamètre intérieur	D _t 2	5,0	mm
Diamètre extérieur	D _t 3	32,0	mm
Crépines	Fente	1,0	mm
	De 0,5 à '	1,0	m
Développement	⋉ Non		
Bouchon de fond	⋉ Non		
Hauteur hors sol	H _t	-	m
Mise en place			
Dalle béton	De - à -		m
Bouchon d'argile	De 0,12 à	0,4	m
Gravier calibré – / – mm	De 0,4 à '	1,0	m
Protection			
Tête métallique	■ Non		
Cadenas	■ Non		
Bouche à clef	☑ Oui		
Regard béton	⋉ Non		
Diamètre protection	D _p	-	mm
Hauteur hors sol	H _p	-	m

(N° Projet: PR.69EN.22.0018)

	<i>/</i>]	U03						PORT DE BOUC	
	Longi	tude (WGS84)	Latitude	(WGS84)	Elévation	Prof. atteinte	Niveau d'eau		
PA4			43,4023	Non renseigné		1,0 m	☑ Néant ☐ Non mesuré ☐ En cours de forage ☐ Stabilisé ☐ Non stabilisé ☐ Sec		
Début			Fin		•	Machine		Opérateur	
2/04/2	022 15	:40	12/	04/2022 16:0	00			Brice TOUSSAINT	
onditio	ons mé	téorologiques				Flaconnage		Préleveur	
lon ren	seigné	•				Non renseign	é	Non renseigné	
Prof.	Lithologie					Description			
0	8581	Couche de forme grav	velo-sableus	se beige					
å:	9 1.5	0,1 m							
		Sable brun graveleux							
- 30		0,3 m							
	0	Limon graveleux noirá	ìtre						
	00	0,5 m							
		Calcaire							
_	1	1 m							
1									

Les paramètres analysés sont indiqués dans le rapport

www.soilcloud.fr

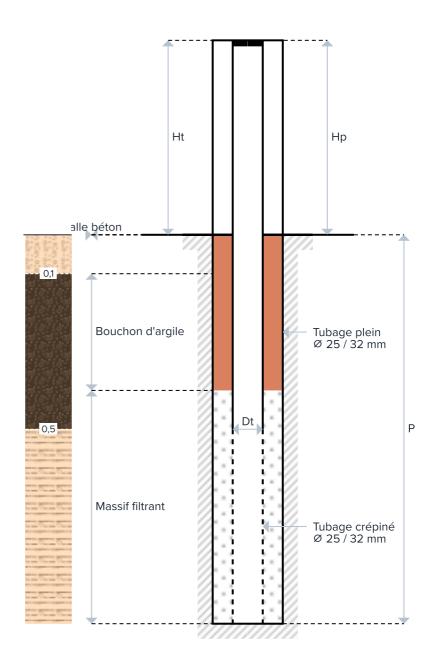
(N° Projet: PR.69EN.22.0018) PORT DE BOUC

	Longitude (WGS84)		Latitude (WGS84)	Elévation		Angle	Prof. atteinte	Niveau d'eau		
PA4	4,976529100		43,402372000 Non renseign		né	0,0°		☑ Néant ☐ Non mesuré ☐ En cours de f		
								☐ Stabilisé ☐ Non stabilisé ☐ Sec		
Données		Туре	Début	Fin				Machine	Opérateur	
PZA-PA4		Piézair	12/04/2022 15:40:00		12/0	12/04/2022 16:00:00				Brice TOUSSAINT

Prof.	P 1, 0	m
Niveau d'eau		
En cours de forage	H _w	m
Avant équipement	H _w	· m
Tube		
✓ PEHD		
Diamètre intérieur	D _t 25,0	mm
Diamètre extérieur	D _t 32,0	mm
Crépines	Fente 1,0	mm
	De 0,5 à 1,0	m
Développement	⋉ Non	
Bouchon de fond	⋉ Non	
Hauteur hors sol	H _t -	· m
Mise en place		
Dalle béton	De - à -	m
Bouchon d'argile	De 0,1 à 0,3	m
Gravier calibré – / – mm	De 0,3 à 1,0	m
Protection		
Tête métallique	■ Non	
Cadenas	⋈ Non	
Bouche à clef	☑ Oui	
Regard béton	⋈ Non	
Diamètre protection	D _p	mm
Hauteur hors sol	H _p	. m

f		das		MAIRIE	DE PORT DE	BOUC		(N° Projet: PR.69EN.22.0018) PORT DE BOUC
	Long	tude (WGS84)	Latitude	(WGS84)	Elévation	Prof. atteinte	Niveau d'eau	
PA6	4,976	486100	43,4021	21800	Non renseigné	1,0 m	☑ Néant □ Non □ Stabilisé □ N	mesuré 🗌 En cours de forage on stabilisé 🗎 Sec
Début			Fin			Machine		Opérateur
	2022 16		12/	04/2022 16:2	20			Brice TOUSSAINT
Condi	tions me	téorologiques				Flaconnag	e	Préleveur
Non re	enseigne					Non rensei	gné	Non renseigné
of.	Lithologie							
Prof.	Ë					Description		
0	100	Couche de forme gra	velo-sableus	se beige				
		0,1 m Sable brun graveleux 0,5 m	(
		Limon gravelo-sablet	ıx beige					
1		1 m						

Les paramètres analysés sont indiqués dans le rapport


www.soilcloud.fr

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

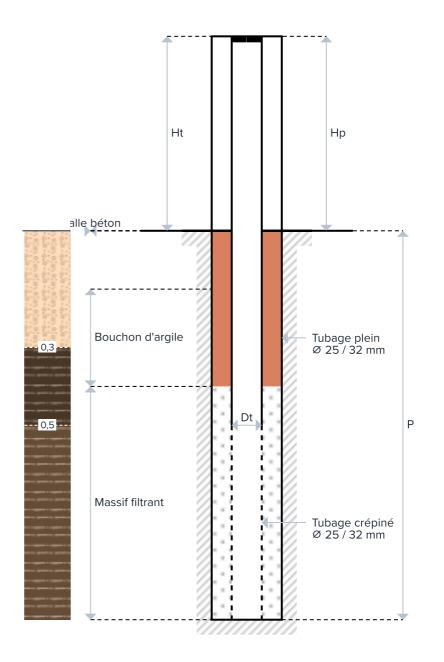
PA6 Longitude (WGS84) 4,976486100		de (WGS84)	Latitude (WGS84)	Elévation		Angle	Prof. atteinte	Nivea	u d'eau	
		43,402121800 Non renseigr		né	é 0,0° 1,0 m ☑		☑ Né	☑ Néant ☐ Non mesuré ☐ En cours de forage		
								☐ Stabilisé ☐ Non stabilisé ☐ Sec		
Données Type		Туре	Début		Fin			Machine	Opérateur	
PZA-PA6 Piézair		12/04/2022 16:00:00		12/0	12/04/2022 16:20:00				Brice TOUSSAINT	

Sondage		
Prof.	P 1,0	m
Niveau d'eau		
En cours de forage	H _w -	m
Avant équipement	H _w -	m
Tube		
✓ PEHD		
Diamètre intérieur	D _t 25,0	mm
Diamètre extérieur	D _t 32,0	mm
Crépines	Fente 1,0	mm
	De 0,5 à 1,0	m
Développement	⋈ Non	
Bouchon de fond	⋈ Non	
Hauteur hors sol	H _t -	m
Mise en place		
Dalle béton	De - à -	m
Bouchon d'argile	De 0,1 à 0,4	m
Gravier calibré – / – mm	De 0,4 à 1,0	m
Protection		
Tête métallique	■ Non	
Cadenas	■ Non	
Bouche à clef	☑ Oui	
Regard béton	■ Non	
Diamètre protection	D _p -	mm
Hauteur hors sol	H _p -	m

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

								TONT BE BOOK
	Longi	tude (WGS84)	Latitu	ude (WGS84)	Elévation	Prof. atteinte	Niveau d'eau	
PA7	4,976	267300	43,40	01975000	Non renseigné	1,0 m		mesuré □ En cours de forage on stabilisé □ Sec
Début				Fin		Machine		Opérateur
12/04/2	2022 09	9:30		12/04/2022 10	:00			Brice TOUSSAINT
Condit	ions mé	étéorologiques				Flaconnage		Préleveur
Non re	nseigné	Ş				Non renseig	né	
Prof.	Lithologie					Description		
0 10 10 10 10 10 10 10 10 10 10 10 10 10	00'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0'0	Couche de forme gra	velo-sat	oleuse				
		Limon sableux brun a	vec grav	ve				
		0,5 m Limon sableux marror	n avec g	rave				
1								

Les paramètres analysés sont indiqués dans le rapport


www.soilcloud.fr

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

			Latitude (WGS84)	·		Angle Prof. atteinte					
PA7 4,976267300 43,		43,401975000 Non renseign		é 0,0°		1,0 m	🗹 Néant 🗆 Non mesuré 🗅 En cours de fora				
								☐ Stabilisé ☐ Non stabilisé ☐ Sec			
Donnée	Données Type Début		Fin				Machine	Opérateur			
PZA-PA	PZA-PA7 Piézair 12/04/2022 09		12/04/2022 09:30:0	0	12/04/2	022	10:00:00			Brice TOUSSAINT	

H _w H _w D _t D _t Fente De (No	0,5	à	25,0 32,0 1,0	m m mm mm mm
D _t D _t Fente	0,5	à	32,0 1,0	m mm mm
D _t D _t Fente	0,5	à	32,0 1,0	mm mm
D _t Fente De (0,5	à	32,0 1,0	mm
D _t Fente De (0,5	à	32,0 1,0	mm
D _t Fente De (0,5	à	32,0 1,0	mm
Fente De (0,5	à	1,0	mm
De (0,5	à	•	
× No	•	à	1,0	m
	on			
₩ KL				
□ 140	on			
Ht			-	m
De -	· à	-		m
De (0,15	à	0,4	m
De (0,4	à	1,0	m
× No	on			
× No	on			
✓ O:	ui			
× No	on			
Dp			-	mm
H _D				m
	De O De O N N N N N Dp	De - à De 0,15 De 0,4 Non Non Non Non Non	De - à - De 0,15 à De 0,4 à X Non Non Non Non Dp	De - à - De 0,15 à 0,4 De 0,4 à 1,0 X Non Non Oui Non

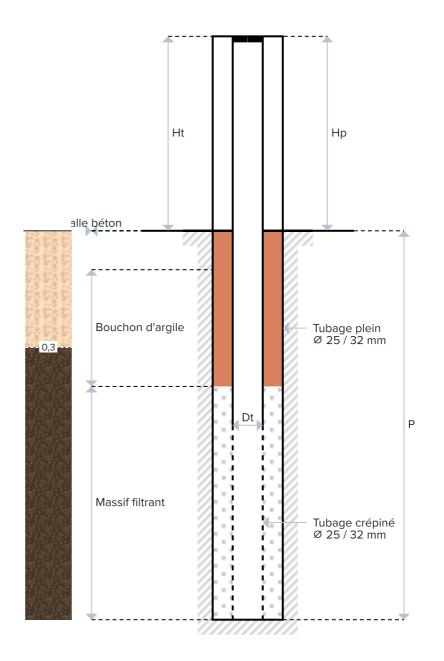
fc	ondas	3
	Longitude (WGS84)	Latitu
РА9	4,976729200	43,40

MAIRIE DE PORT DE BOUC

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

				<u> </u>				
	Long	tude (WGS84)	Lat	itude (WGS84)	Elévation	Prof. atteinte	Niveau d'eau	
PA9	4,976	729200	43,	401949100	Non renseigné	1,0 m	☑ Néant □ Non □ Stabilisé □ N	ı mesuré □ En cours de forage on stabilisé □ Sec
Début				Fin		Machine		Opérateur
12/04/2	022 10	:10		12/04/2022 10:3	0			Brice TOUSSAINT
Conditi	ons mé	téorologiques				Flaconnage		Préleveur
Non rer	nseigné	•				Non renseign	é	Non renseigné
Prof.	Lithologie					Description		
0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Couche de forme grav	/elo-s	ableuse beige				
		Sable graveleux brun						
1								

Les paramètres analysés sont indiqués dans le rapport


www.soilcloud.fr

(N° Projet: PR.69EN.22.0018) PORT DE BOUC

	Longitude (WGS84) Latitude (WGS84)		Latitude (WGS84)	Elévation		Angle	Prof. atteinte	Nivea	
PA9 4,976729200		43,401949100	Non renseigné		0,0°	1,0 m	☑ Néant ☐ Non mesuré ☐ En cours de fora		uré 🛘 En cours de forage
							Stabilisé Non stabilisé Sec		
Données Type Début		Début	Fin					Machine	Opérateur
PZA-PA	PZA-PA9 Piézair 12/04/2022 10:10:00)	12/04/2022 10:30:00					Brice TOUSSAINT

Prof.	P 1,0	m
Niveau d'eau		
En cours de forage	H _w -	m
Avant équipement	H _w -	m
Tube		
☑ PEHD		
Diamètre intérieur	D _t 25,0	mm
Diamètre extérieur	D _t 32,0	mm
Crépines	Fente 1,0	mm
	De 0,5 à 1,0	m
Développement	⋉ Non	
Bouchon de fond	⋉ Non	
Hauteur hors sol	H _t -	m
Mise en place		
Dalle béton	De - à -	m
Bouchon d'argile	De 0,1 à 0,4	m
Gravier calibré – / – mm	De 0,4 à 1,0	m
Protection		
Tête métallique	■ Non	
Cadenas	⋈ Non	
Bouche à clef	☑ Oui	
Regard béton	⋈ Non	
Diamètre protection	D _p -	mm
Hauteur hors sol	H _p -	m

ANNEXE 12: FICHES DE PRELEVEMENT DES GAZ DU SOL

Cette annexe contient 6 pages

SOL

PAI

RONNEM	ENT				3(JL			
			Mairie de Port de Bouc			Date de prélèvement		14/04/2	2022
			Port de Bouc			Coordonnées			
			Place des Aigues Douces			X (m) - WGS84 (EPSG:4326)		4.976	554
et			Véronique LAGNEAU			Y (m) - WGS84 (EPSG:4326)		43.40	269
			PR.69EN.22.0018			Opérateur		E.ARI	KA
		CA	RACTERISTICILI	S TECH	NIOLIES	DE L'OUVRAGE			
age	Pié			1.00				Bouche	à clef
de l'ouvrage	24	mm	Vol. de l'ouvrage	0.45	L	Cimentation de l'ouvrage		Bon é	etat
repère	0.00	m / sol	Vol. min à purger	2.26	L	Etat de l'ouvrage	☑ oui	Во	n état général
es crépines	0.5-1.0	m / ropàro	Type de revêtement	Fnr	ohé	Fau dans l'ouvrage			✓ NON
zairs)			Type de revetement	Lilli					
			B (1)					T	
			•	☑ oui					NON
d'humidité de	s sols	67%		-	m		LI OUI		☑ NON
			PURC	GE DE L'	OUVRAG	GE .			
ge	Pompe	GilAir LI	Heure du début	14	:28	Durée de purge	3	3	min
'aspiration	0,75	m / repère	Heure de fin	14	:31	Débit de purge	1.0	00	L/min
						Volume purgé	3.0	00	L
			:	SUIVI DE LA	PURGE				
ns l'ouvrage	PID	CH4	со	H2S	O2	CO2	Hum	idité	Température
	ppmV	%	ppmV	ppmV	%	%	9	6	°C
			3	ELY.A.17					
								3ELY.	A.15
	0.0	0.00	0.00	0	20.9	Ι .	6	7	17.0
									17.0
				l .		TO A CIT			
ı	ı	1	PRELEVE	MENT D	E L'OUV	RAGE	T	Dábia da	
Référence	Réf. Pompe	Réf. débitmètre	Nom de l'échantillon	Heure de début	Heure de fin		Heure	prél.	Volume prélevé
						, ,			L
-				14:40:00	16:55:00	(min)			136.0
						135	moyenne	1.008	
	Pompe de	Débitmètre de	PAI				écart	1.50%	
	location - I	location				(hh:min)	16:58	0.500	
CA				16.58	18-18	01:20:00	18:18	0.505	40.2
CA				10.50	10.10	(min)	moyenne	0.503	10.2
						80	écart	1.00%	
			CONDITIO	NC METE		CIOLIES			
	ues des 3 i r	récédents :	CONDITIO	NO INIETI	OKOLO	Ensoleillé			
météologorie	4ucs ucs J] [n eceuents :		Humidité	Direction du		Pres	sion	Température
météologorio s au jour de	1					(oxer)			
météologorio s au jour de rement	Météo o	observée	Référence station météo	%	vent	km/h	hF	Pa	°C
s au jour de rement sur site	Enso	oleillé		% 51	-	7	101	7.6	14.30
au jour de rement	Enso		Référence station météo Istres - Le Tubé	%				7.6	
a d r e r e	et age de l'ouvrage repère es crépines tairs) MESURE PRI d'humidité de ge aspiration as l'ouvrage nce PID mpérature gaz sols de purge purge	age Pié de l'ouvrage 24 repère 0.00 es crépines 0,5-1.0 MESURE PRELIMINAIRE re PID 0 d'humidité des sols ge Pompe daspiration 0,75 ppmV nce PID ppmV nce PID ppmV nce PID ppmv nce PID ppmv Référence Réf. Pompe location - I	et Age Piézair de l'ouvrage 24 mm repère 0.00 m / sol es crépines 0,5-1,0 m / repère exairs) MESURE PRELIMINAIRE re PID 0 ppmV d'humidité des sols 67% Thumidité des sols 67% Pompe GilAir L1 aspiration 0,75 m / repère PID CH4 ppmV % Ince PID	Mairie de Port de Bouc Port de Bouc Place des Aigues Douces Véronique LAGNEAU PR.69EN.22.0018 CARACTERISTIQUI age Piézair Fond de l'ouvrage de l'ouvrage 24 mm Vol. de l'ouvrage repère 0.00 m/sol Vol. min à purger es crépines cairs) MESURE PRELIMINAIRE re PID 0 ppmV Prélèvement du point l'humidité des sols 67% Profondeur de la nappe PURC ge Pompe GilAir L1 Heure du début aspiration 0.75 m/repère Heure de fin 15 my repère PID 0.000 0.000 0.000 16 ppmV % ppmV PRELEVE Référence Réf. Pompe Réf. débitmètre de location 1 Débitmètre de location 1 PA1	Mairie de Port de Bouc Port de Bouc Place des Aigues Douces Véronique LAGNEAU PR.69EN.22.0018 CARACTERISTIQUES TECH age Piézair Fond de l'ouvrage 1.00 Be l'ouvrage 24 mm Vol. de l'ouvrage 1.00 Mr / sol Vol. min à purger 2.26 Be scrépines 2.10 BESURE PRELIMINAIRE Pre PID 0 ppmV Prélèvement du point 1/2 oul Prumidité des sols 67% Profondeur de la nappe - PURGE DE L' Profondeur de la nappe - PURGE DE L' Profondeur de la nappe - SUIVI DE LA SUIVI DE LA SUIVI DE LA SUIVI DE LA DE L' SUIVI DE LA	Mairie de Port de Bouc Port de Bouc Port de Bouc Piace des Aigues Douces Véronique LAGNEAU PR.69EN.22.0018 CARACTERISTIQUES TECHNIQUES age Piézair Fond de l'ouvrage 1.00 m / repère de l'ouvrage 24 mm Vol. de l'ouvrage 0.45 L repère 0.00 m / sol Vol. min à purger 2.26 L ses crépines 0.5-1,0 m / repère Type de revêtement Enrobé MESURE PRELIMINAIRE Pre PID 0 ppmV Prélèvement du point 100 m Non Pl'humidité des sols 67% Profondeur de la nappe - m PURGE DE L'OUVRAC ge Pompe GilAir L1 Heure du début 14:28 aspiration 0,75 m / repère Heure de fin 14:31 SUIVI DE LA PURGE aspiration 0,75 m / repère Heure de fin 14:31 SUIVI DE LA PURGE aspiration 0,75 m / repère Heure de fin 14:31 SUIVI DE LA PURGE aspiration 0,75 m / repère Heure de fin 14:31 PURGE DE L'OUVRAC ge Pompe GilAir L1 CO H25 02 ppmV % ppmV ppmV ppmV % ABLYA.17 POMPE de location 10,00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Mairie de Port de Bouc Port de Bouc Port de Bouc Place des Aigues Douces X (m) - WGSM (BPSG-1326) PR-69EN 22.0018 PR-69EN 22.0018 CARACTERISTIQUES TECHNIQUES DE L'OUVRAGE Age Piézair Fond de l'ouvrage 1.00 m / repère de l'ouvrage 2.26 L Etat de l'ouvrage 2.27 mm / repère 30,5-1,0 m / repère 4 Frofendeur de la nappe - m Présence d'une couverture 4 Frofendeur de la nappe - m Présence d'une couverture 4 Frofendeur de la nappe - m Présence d'une couverture 5 Frofendeur de la nappe - m Présence d'une couverture 6 Frofendeur de l'ouvrage 7 Frofendeur de la nappe - m Présence d'une couverture 7 Frofendeur de la nappe - m Présence d'une couverture 8 Frofendeur de la nappe - m Présence d'une couverture 9 Frofendeur de la nappe - m Présence d'une couverture 9 Frofendeur de l'ouvrage 9 Frofendeur 9 Fr	Mairie de Port de Bouc Port de Bouc Pace des Aigues Douces Yernorique LAGNEAU PRESENTAZO018 CARACTERISTIQUES TECHNIQUES DE L'OUVRAGE PRESENTAZO018 Pérair Fond de l'ouvrage 1.00 m / repère Propère 0.00 m / sol Vol. min à purger 2.26 L Etat de l'ouvrage cariers BETOUVRAGE PRESENTAZO018 CARACTERISTIQUES TECHNIQUES DE L'OUVRAGE Normal purger 2.26 L Etat de l'ouvrage des crépines BETOUVRAGE PRESENTAZO018 CARACTERISTIQUES TECHNIQUES DE L'OUVRAGE Propère 0.00 m / sol Vol. min à purger 2.26 L Etat de l'ouvrage des crépines BETOUVRAGE SE Crépines BETOUVRAGE FORMESURE PRELIMINAIRE PREPID 0 ppm/V Prélèvement du point 2 out	Mairie de Port de Bouc

PLAN DE SITUATION

PHOTOGRAPHIE DE l'OUVRAGE

	CONDITIONNEMENT, CONSERVATION ET TRANSPORT										
Type de support	Voir plus haut	Conditionnement	Glacière réfrigérée	Laboratoire	Agrolab						
Analyses effectuées	Cf bordereau d'analyses	Date de réception labo	c.f bordereau d'analyse	Expédié le	15/04/2022						

SOL

PA3

# ENVIR	RONNEM	ENT				3()L			
Client				Mairie de Port de Bouc			Date de prélèvement		14/04/	2022
'ille				Port de Bouc			Coordonnées			
dresse				Place des Aigues Douces			X (m) - WGS84 (EPSG:4326)		4.97	541
hef de proje	et			Véronique LAGNEAU			Y (m) - WGS84 (EPSG:4326)		43.40	253
°Affaire				PR.69EN.22.0018			Opérateur		E.AR	
		L				NUOLIEG	•	L		
		D:4	zair	RACTERISTIQUE	0.98	NIQUES	DE L'OUVRAGE Protection de surface	ı	Bouche	عاملا
ype d'ouvra				Fond de l'ouvrage		-				
	le l'ouvrage	24	mm	Vol. de l'ouvrage	0.44	L	Cimentation de l'ouvrage		Bon	
auteur du r		0.00	m / sol	Vol. min à purger	2.22	L	Etat de l'ouvrage	+ = -		n état général
piéz	es crépines	0,5-0,98	m / repère	Type de revêtement	Enr	obé	Eau dans l'ouvrage	□ ou	l	✓ NON
	MESURE PRI	I IMINAIRE				VAI DIA	ATION DU PRELEVEMENT	l		
Mesur		0	ppmV	Prélèvement du point	☑ oui		Purge de l'ouvrage	☑ ou	1	NON
	l'humidité de		51%	Profondeur de la nappe			Présence d'une couverture	_ ou		☑ NON
Ltat u	i ilulililulce de	3 3013	31/6		_					
		_				OUVRAG		1		
util de purg			GilAir LI	Heure du début	14		Durée de purge	:		min
sition de l'	aspiration	0,75	m / repère	Heure de fin 14:		:26	Débit de purge	1.00		L/min
							Volume purgé	3.00		L
					SUIVI DE LA	PURGE	<u>, </u>			
		PID	CH4	со	H2S	O2	CO2	Hum	nidité	Température
Mesure dan	is l'ouvrage	ppmV	%	ppmV	ppmV	%	%		%	°C
Référer	nce PID	ppiiiv	/6		ELY.A.17	/6	/6	<u> </u>	'0	
	npérature gaz				ELT.7CT7					
des									3ELY.	A.15
Début de purge 0.0 0.00				0.00	0	20.9	-	5	1	21.0
Fin de	purge	0.00	0.00	0.00	0	20.7	-	5	1	20.0
				PRELEVE	MENT D	E L'OUY	RAGE			
Type de	Référence	Réf. Pompe	Réf.	Nom de l'échantillon	Heure de	Heure de fin	Durée de prélèvement	Heure	Débit de prél.	Volume prélev
support		•	débitmètre		début		(hh:min)		L/min	L
							02:15:00	14:34	1.000	
							(min)	16:49	1.012	
Carulite	-				14:34:00	16:49:00		moyenne	1.006	135.8
		Pompe de	Débitmètre de				135	écart	1.20%	
		location - I	location	PA3			(hh:min)	16:53	0.500	
							01:20:00	18:13	0.524	
harbon actif	CA				16:53:00	18:13:00			0.512	41.0
							(min)	moyenne		
							80	écart	4.80%	
				CONDITIO	NS METE	OROLO	GIQUES			
Conditions :	météologorio	jues des 3 j p	récédents :				Ensoleillé			
Conditions	•	Métén	observée	Référence station météo	Humidité	Direction du	` '		sion	Température
prélève					%	vent	km/h	h		°C
Arrivée Départ			oleillé oleillé	Istres - Le Tubé	51 46	-	7 22		7.6	14.30 23.40
Берагт	uu site	Enso	ore life		-10		1 22	101	0.0	23.40
					OBSERVAT	TIONS				
					-					
		PLAN	I DE SITUAT	TION			PHOTOGRAPHIE	DE l'OUV	RAGE	
								RE	Y	

	CONDITIONNEMENT, CONSERVATION ET TRANSPORT												
Type de support	Voir plus haut	Conditionnement	Glacière réfrigérée	Laboratoire	Agrolab								
Analyses effectuées	Cf bordereau d'analyses	Date de réception labo	c.f bordereau d'analyse	Expédié le	15/04/2022								
	·	·			FTQ-233-303-C								

FICHE DE PRELEVEMENT DES GAZ DU

SOL

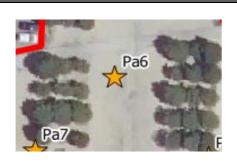
PA4

KUNNEMI	T14.1								
			Mairie de Port de Bouc			Date de prélèvement		14/04/	2022
			Port de Bouc			Coordonnées			
			Place des Aigues Douces			X (m) - WGS84 (EPSG:4326)		4.976	553
et			Véronique LAGNEAU			Y (m) - WGS84 (EPSG:4326)		43.40	237
			PR.69EN.22.0018					E.ARI	KA
	l		DA CEEDICEIOLI	- TEQU	NUOLUEA	•			
	D:						_	B 1	` ' ' '
•	0.00	m / sol	Voi. Illiii a purger	2.26		Etat de l'ouvrage	1	Во	n état général
•	0,5-1,0	m / repère	Type de revêtement	Enn	obé	Eau dans l'ouvrage	□ 001		✓ NON
	ELIMINAIRE				VALDIA	ATION DU PRELEVEMENT			
re PID	0	ppmV	Prélèvement du point	 oui	NON	Purge de l'ouvrage	⊿ oui		□ NON
l'humidité de	s sols	77%	Profondeur de la nappe	-	m	Présence d'une couverture	☐ oui		☑ NON
			DI ID	CE DE L'A		E			
70	Pomo	GilAir I							
									min L/min
aspiration	0,75	m / repere	neure de fin	13:	.43				
				CLUM/LDE LA	DUDGE	volume purge	3.	00	L
		l	•	OIVI DE LA	PURGE				
ns l'ouvrage	PID	CH4	со	H2S	O2	CO2			Température
	ppmV	%	•		%	%	9	5	°C
			3	ELY.A.I/					
nperature gaz sols								3ELY.	4.15
	0.0	0.00	0.00	0	20.9	-	7	7	17.0
purge	0.00	0.00	0.00	0	20.9	-	7	0	17.0
			DDEL EVE	MENIT B	E LIGHN	DA 65			
			PRELEVE	MENID	E L'OUV	RAGE		Date 1	
Référence	Réf. Pompe	Réf. débitmètre	Nom de l'échantillon	Heure de début	Heure de fin		Heure	prél.	Volume prélevé
						, ,	12:49		<u> </u>
-				13:48:00	16:03:00	(illiii)			138.8
		D/11: 1				135			
			PA4			(h.h!)			
		10000011				` '			
CA				16:10:00	17:30:00				39.4
						, ,			
					<u> </u>	80	ecart	3.00%	
			CONDITIO	NS METE	OROLO	GIQUES			
météologorio	ques des 3 j p	récédents :				Ensoleillé			
au jour de	Météo	observée	Référence station météo	Humidité	4				Température
ement				%	vent	km/h			°C
sur site		oleillé oleillé	Istres - Le Tubé	51 46	-	7 22	101		14.30 23.40
du sita		JICHIC .		יד		44	101	0.0	23.40
: du site									
du site				OBSERVAT	TIONS				
	et age le l'ouvrage repère se crépines airs) MESURE PRI re PID l'humidité de ge aspiration as l'ouvrage le purge purge Référence CA météologoric au jour de ement	et lege Pié le l'ouvrage 24 repère 0.00 so crépines airs) 0,5-1,0 méESURE PRELIMINAIRE re PID 0 l'humidité des sols ge Pompe asspiration 0,75 les l'ouvrage PID ppmV nce PID npérature gaz sols le purge 0.00 Référence Réf. Pompe - Pompe de location - 1 CA météologoriques des 3 j pau jour de ement Météo de location - 1	ge Piézair le l'ouvrage 24 mm repère 0.00 m / sol sol sir sir survage Pompe GilAir L1 aspiration 0,75 m / repère PID CH4 ppmV % Ince PID prévature gaz sols le purge 0.00 0.00 Référence Réf. Pompe Réf. débitmètre Pompe de location - I CA Météologoriques des 3 j précédents : au jour de météo observée	Mairie de Port de Bouc Port de Bouc Place des Aigues Douces et Véronique LAGNEAU PR.69EN.22.0018 CARACTERISTIQUI age Piézair Fond de l'ouvrage le l'ouvrage 24 mm Yol. de l'ouvrage le l'ouvrage 0.00 m / sol Vol. min à purger se crépines airs) MESURE PRELIMINAIRE Le PID 0 ppmV Prélèvement du point l'humidité des sols 77% Profondeur de la nappe PURC ge Pompe GilAir L1 Heure du début aspiration 0,75 m / repère Heure de fin Si 'ouvrage PID CH4 CO ppmV % ppmV ne PID CH4 CO ppmV % ppmV Reférence Réf. Pompe Réf. débitmètre de location 1 PRELEVE Référence Réf. Pompe de location 1 Débitmètre de location 1 PA4 CA CA CONDITIO météologoriques des 3 j précédents : au jour de Météo observée Référence station météo	Mairie de Port de Bouc Port de Bouc Port de Bouc Place des Aigues Douces Véronique LAGNEAU PR.69EN.22.0018 CARACTERISTIQUES TECH Ige Piézair Fond de l'ouvrage 1.00 Ide l'ouvrage 24 mm Vol. de l'ouvrage 0.45 Pepère 0.00 m / sol Vol. min à purger 2.26 se crépines airs) m/ repère Type de revêtement Purge PID 0 ppmV Prélèvement du point Profondeur de la nappe Presention 0,75 m / repère Heure de fin 13 SUIVI DE LA SUIVI DE LA SUIVI DE LA SI 'ouvrage PID CH4 CO H2S ppmV % ppmV ppmV ppmV Ide PID 3ELY.A.17 Proferature gaz sols Référence Réf. Pompe Ref. débitmètre de location 1 PRELEVEMENT D Référence Réf. Pompe Ref. débitmètre de location 1 CA CA Pompe de location 1 Préférence station météo Météo observée Référence station météo Météo observée Plumiditée ement Metro de Reférence station météo Météo observée Plumiditée ment Metro de Météo observée Plumiditée Metment Metro de Météo observée Référence station météo Météo observée Plumiditée Metment Metro de Météo observée Plumiditée Metro Distriction Météo Météo observée Plumiditée Metro Distriction Météo Météo observée Plumiditée Metro Distriction Météo Météo observée Plumiditée Metro Distriction Méteo Méteo Distriction Méteo Distriction Méteo Méteo Dis	Mairie de Port de Bouc Port de Bouc Port de Bouc Place des Aigues Douces Véronique LAGNEAU PR.69EN.22.0018 CARACTERISTIQUES TECHNIQUES Rege Piézair Fond de l'ouvrage 1.00 m/ repère le l'ouvrage 24 mm Vol. de l'ouvrage 0.45 L repère 0.00 m/ sol Vol. min à purger 2.26 L repère 0.00 m/ repère Type de revêtement Enrobé MESURE PRELIMINAIRE Pe PID 0 ppmV Prélèvement du point ☑ OUI ☐ NON Plumidité des sols 77% Profondeur de la nappe - m PURGE DE L'OUVRAC ge Pompe GilAir L1 Heure du début 13:40 aspiration 0.75 m/ repère Heure de fin 13:43 SUIVI DE LA PURGE sis l'ouvrage PID CH4 CO H2S O2 ppmV % ppmV ppmV % ppmV Melarite gaz sols le purge 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mairie de Port de Bouc Place des Aigues Douces PR. Opérateur CARACTERISTIQUES TECHNIQUES DE L'OUVRAGE Refèrence Prézair Fond de l'ouvrage 1.00 m / repère Protection de surface le le fouvrage 2.4 mm Vol. de l'ouvrage 1.00 m / repère Protection de surface le repère 0.00 m / soi Vol. min à purger 2.26 L Etat de l'ouvrage les crépines airs) 0,5-1,0 m / repère Type de revêtement De Débit de purge Prélèvement du point 2.0 m Presènce d'une couverture PURGE DE L'OUVRAGE Reférence PD 0 ppmV Prélèvement du point 13:40 Durée de purge Pompe GilAir LI Heure du début 13:40 Durée de purge Pompe GilAir LI Heure de fin 13:43 Débit de purge Volume purgé SUIVI DE LA PURGE PID CH4 CO H2S O2 CO2 ppmV % ppmV ppmV ppmV % % % SUIVI DE LA PURGE POMPE GILAIR LI Purge de l'ouvrage Nouve purge Nouve Nouve purge Nouve purge Nouve purge Nouve Nouve purge Nouve purge Nouve Nouve purge Nouve Nouve purge Nouve Nouve purge Nouve Nouve PRELEVEMENT DE L'OUVRAGE Reférence Ref. Pompe Ref. Nom de l'échantillon Nouve d'ébut Nouve Nouv	Mairie de Port de Bouc Y (m) - vrosse (spréculzio) Y (m) - vrosse (spréculz	Maine de Port de Bouc

PLAN DE SITUATION

PHOTOGRAPHIE DE l'OUVRAGE

	CONI	DITIONNEMENT	, CONSERVATIOI	N ET TRANSPORT	
Type de support	Voir plus haut	Conditionnement	Glacière réfrigérée	Laboratoire	Agrolab
Analyses effectuées	Cf bordereau d'analyses	Date de réception labo	c.f bordereau d'analyse	Expédié le	15/04/2022



SOL

PA6

# ENVI	RONNEM	ENT				3(<i>/</i> L			
Client				Mairie de Port de Bouc			Date de prélèvement		14/04/	2022
Ville				Port de Bouc			Coordonnées			
Adresse				Place des Aigues Douces			X (m) - WGS84 (EPSG:4326)		4.976	549
Chef de proje	et			Véronique LAGNEAU			Y (m) - WGS84 (EPSG:4326)		43.40	212
N°Affaire				PR.69EN.22.0018			Opérateur		E.ARI	KA
			- 64		C TECH	NIIOLIEG				
F 41		D:4		RACTERISTIQUE	I.00	_	DE L'OUVRAGE Protection de surface	ı	Daviele	à alaf
Type d'ouvra			zair	Fond de l'ouvrage	0.45				Bouche	
Ø intérieur d		0.00	mm / l	Vol. de l'ouvrage Vol. min à purger	2.26	L	Cimentation de l'ouvrage		Bon e	
Hauteur du r	•	0.00	m / sol	voi. IIIII a purger	2.26	L	Etat de l'ouvrage	☑ oui	Во	n état général
(piéz		0,5-1,0	m / repère	Type de revêtement	Enr	obé	Eau dans l'ouvrage	☐ oui		✓ NON
	MESURE PRI	LIMINAIRE				VALDIA	ATION DU PRELEVEMENT			
Mesur	re PID	0	ppmV	Prélèvement du point	✓ oui	NON	Purge de l'ouvrage	☑ oui		NON
Etat d	l'humidité de	s sols	45%	Profondeur de la nappe	-	m	Présence d'une couverture	OUI		✓ NON
					SE DE L'A	OUVRAG	E			
Outil de purg	70	Pompe	GilAir LI	Heure du début	-		Durée de purge] 3		min
Position de l'		0,75		Heure du debut			Débit de purge	1.0		min L/min
osition de l	aspir ation	0,/3	m / repère	rieure de IIII	13	. 10	Volume purgé	3.0		L/min L
					SUIVI DE LA	PLIRGE	voidille purge	3.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L
		l	l		SOIVI DE LA	1	T	T T		
Mesure dan	ns l'ouvrage	PID	CH4	со	H2S	O2	CO2	Hum	idité	Température
ŭ		ppmV	%	ppmV	ppmV	%	%	9	6	°C
Référer	nce PID			3	ELY.A.17					
Réf. sonde ten des	npérature gaz sols								3ELY.	A.15
Début d	Début de purge 0.0 0.00		0.00	0.00	0	20.9	-	4	5	17.0
Fin de	purge	0.00	0.00	0.00	0	20.9	-	66		17.0
				PRELEVE	MENT D	E L'OUY	RAGE			
Type de	Référence	Réf. Pompe		Nom de l'échantillon	Heure de début	Heure de fin	Durée de prélèvement	Heure	Débit de prél.	Volume prélevé
support			débitmètre		debut		(hh:min)		L/min	L
							02:15:00	13:53	1.000	
Carulite					13:53:00	16:08:00	(min)	16:08	1.043	137.9
Carunte					13.33.00	10.00.00	135	moyenne	1.022	137.7
		Pompe de	Débitmètre de	D4.4			135	écart	4.30%	
		location - I	location	PA6			(hh:min)	16:17	0.500	
							01:20:00	17:37	0.495	
Charbon actif	CA				16:17:00	17:37:00	(min)	moyenne	0.498	39.8
							80	écart	1.00%	
				CONDITIO	NS METE	OROLO				
	météologorio	ues des 3 j p	recédents :		11 11/4	Discretion !	Ensoleillé			- , .
Conditions prélève	•	Météo d	observée	Référence station météo	Humidité %	Direction du vent	Vitesse du vent (si ext.)	Pres		Température °C
Arrivée		Ensc	oleillé		51	-	7 Km/n			14.30
Départ			oleillé	Istres - Le Tubé	46		22	101		23.40
					OBSERVAT	TIONS				
					OBSERVA	IONS				
					-					
			I DE SITUAT				PHOTOGRAPHIE			

PLAN DE SITUATION

PHOTOGRAPHIE DE l'OUVRAGE

	CONI	DITIONNEMENT	, CONSERVATIOI	N ET TRANSPORT	
Type de support	Voir plus haut	Conditionnement	Glacière réfrigérée	Laboratoire	Agrolab
Analyses effectuées	Cf bordereau d'analyses	Date de réception labo	c.f bordereau d'analyse	Expédié le	15/04/2022

PA7

# ENVIR	ONNEM	ENT				30)L			
Client				Mairie de Port de Bouc			Date de prélèvement		14/04/	2022
Ville				Port de Bouc			Coordonnées			
Adresse				Place des Aigues Douces			X (m) - WGS84 (EPSG:4326)		4.976	527
Chef de proje	t			Véronique LAGNEAU			Y (m) - WGS84 (EPSG:4326)		43.40	
N°Affaire				PR.69EN.22.0018			Opérateur		E.AR	
N Allalle				TR.07EN.22.0010			Operateur		L,AIX	
			CA	RACTERISTIQUE	ES TECH	NIQUES	DE L'OUVRAGE			
Type d'ouvrag	ge	Pié	zair	Fond de l'ouvrage	0.98	m / repère	Protection de surface		Bouche	à clef
Ø intérieur de	e l'ouvrage	24	mm	Vol. de l'ouvrage	0.44	L	Cimentation de l'ouvrage		Bon	état
Hauteur du re	•	0.00	m / sol	Vol. min à purger	2.22	L	Etat de l'ouvrage	⊿ oui	Во	n état général
Position des (piéza	irs)	0,5-0,98	m / repère	Type de revêtement	Enr		Eau dans l'ouvrage	☐ OUI		✓ NON
		LIMINAIRE		- 413			ATION DU PRELEVEMENT			
Mesure		0	ppmV	Prélèvement du point	☑ oui	NON	Purge de l'ouvrage	☑ oui		NON
Etat d'	humidité de	s sols	67%	Profondeur de la nappe	-	m	Présence d'une couverture	OUI		✓ NON
				PURC	GE DE L'	OUVRAG	E			
Outil de purg	e	Pompe	GilAir LI	Heure du début	10:		Durée de purge	3		min
Position de l'a		0,75	m / repère	Heure de fin	10:		Débit de purge	1.0	00	L/min
							Volume purgé	3.0	00	L
					SUIVI DE LA	PURGE	. 0			
					I	1		·		
Mesure dans l'ouvrage		PID ppmV	CH4 %	CO ppmV	H2S ppmV	O2 %	CO2 %	Hum %		Température °C
Référenc	Référence PID				ELY.A.17	1				
Réf. sonde température gaz des sols									3ELY.	A.15
Début de	purge	0.0	0.00	0.00	0	20.9		7	5	17.0
Fin de p	ourge	0.00	0.00	0.00			17.0			
				PRELEVE	MENT D	E L'OLIV	DACE			
			ı	PRELEVE	MENID	ELOUV	KAGE	1	Débit de	
Type de	Référence	Réf. Pompe	Réf.	Nom de l'échantillon	Heure de	Heure de fin	Durée de prélèvement	Heure	prél.	Volume prélevé
support		•	débitmètre		début		(hh:min)		L/min	L
							02:15:00	10:15	1.000	
6 15					10.15.00	12.20.00	(min)	12:30	1.013	135.0
Carulite	-				10:15:00	12:30:00		moyenne	1.007	135.9
		Pompe de	Débitmètre de				135	écart	1.30%	
		location - I	location	PA7			(hh:min)	12:49	0.500	
							01:20:00	14:09	0.522	
Charbon actif	CA				12:49:00	14:09:00	(min)	moyenne	0.511	40.9
							80	écart	4.40%	
							00	ecare	4.40 /6	
				CONDITIO	NS METE	OROLO	GIQUES			
Conditions n		ues des 3 j p	récédents :				Ensoleillé			
Conditions	•	Météo o	observée	Référence station météo	Humidité	Direction du		Pres		Température
prélève			oleillé		%	vent	km/h	hF		°C 14.30
Arrivée s Départ o			oleillé	Istres - Le Tubé	51 46	-	22	101		23.40
D Cpui C		2/130						.01		23.10
					OBSERVAT	TIONS				
		PLAN	I DE SITUAT	TION			PHOTOGRAPHIE	DE l'OUVI	RAGE	

Voir plus haut				
voir plus naut	Conditionnement	Glacière réfrigérée	Laboratoire	Agrolab
ordereau d'analyses	Date de réception labo	c.f bordereau d'analyse	Expédié le	15/04/2022
				FTQ-233-303-C
		rdereau d'analyses Date de réception labo	·	·

SOL

PA9

# ENVIR	RONNEMI	ENT				_	/L			
Client				Mairie de Port de Bouc			Date de prélèvement		14/04/	2022
Ville				Port de Bouc			Coordonnées	•		
Adresse		1		Place des Aigues Douces			X (m) - WGS84 (EPSG:4326)		4.97	673
Chef de proje	et			Véronique LAGNEAU			Y (m) - WGS84 (EPSG:4326)		43.40	195
N°Affaire				PR.69EN.22.0018			Opérateur		E.AR	IKA
			CA	RACTERISTIQUE	S TECH	NIOUES	DE L'OUVRAGE			
Type d'ouvra	ige	Pié	zair	Fond de l'ouvrage	1.00		Protection de surface	1	Bouche	à clef
Ø intérieur d		24	mm	Vol. de l'ouvrage	0.45	L	Cimentation de l'ouvrage		Bon	état
Hauteur du r		0.00	m / sol	Vol. min à purger	2.26	L	Etat de l'ouvrage	☑ oui	Во	n état général
Position de (piéz		0,5-1,0	m / repère	Type de revêtement	Enr	obé	Eau dans l'ouvrage	OUI		✓ NON
	MESURE PR	ELIMINAIRE				VALDIA	ATION DU PRELEVEMENT			
Mesur	e PID	0	ppmV	Prélèvement du point	✓ OUI	NON	Purge de l'ouvrage	☑ oui		NON
Etat d	'humidité de	s sols	67%	Profondeur de la nappe	-	m	Présence d'une couverture	OUI		✓ NON
				PURC	GE DE L'	OUVRAG	GE .			
Outil de purg	ge	Pompe	GilAir LI	Heure du début	10:	:00	Durée de purge	3	3	min
Position de l'	aspiration	0,75	m / repère	Heure de fin	10:	:03	Débit de purge	1.0	00	L/min
							Volume purgé	3.00		L
					SUIVI DE LA	PURGE				
Mesure dans l'ouvrage		PID	CH4	со	H2S	O2	CO2	Hum		Température
ppmV %		ppmV	ppmV	%	%	9	6	°C		
Référen				3	ELY.A.17					
Réf. sonde température gaz des sols									3ELY.	
	Début de purge 0.0 0.00			0.00	0	20.9	-	8		17.0
Fin de	purge	0.00	0.00	0.00	0	20.9	-	2	4	21.0
				PRELEVE	MENT D	E L'OUV	RAGE			
Type de support	Référence	Réf. Pompe	Réf. débitmètre	Nom de l'échantillon	Heure de début	Heure de fin		Heure	Débit de prél.	Volume prélevé
• • •							(hh:min)		L/min	L
							02:15:00	10:10	1.032	
Carulite	-				10:10:00	12:25:00	(min)	12:25	1.015	138.2
							135	moyenne	1.024	
		Pompe de	Débitmètre de	PA9				écart	1.65%	
		location - I	location				(hh:min)	12:45	0.500	
Charbon actif	CA				12:45:00	14:05:00	01:20:00	14:05	0.483	39.3
							(min)	moyenne	0.492	
							80	écart	3.40%	
				CONDITIO	NS METE	OROLO	GIQUES			
Conditions I	météologori	ques des 3 j p	récédents :				Ensoleillé			
Conditions		Météo d	observée	Référence station météo	Humidité	Direction du		Pres		Température
prélève Arrivée		Ensc	oleillé		% 51	vent	km/h 7	hF 101		°C 14.30
Départ			oleillé	Istres - Le Tubé	46	-	22	101		23.40
					OBSERVAT	TIONS				
					-					
		PLAN	DE SITUAT	TION			PHOTOGRAPHIE	DE I'OUVI	RAGE	

	CON	DITIONNEMENT	, CONSERVATIOI	N ET TRANSPORT	
Type de support	Voir plus haut	Conditionnement	Glacière réfrigérée	Laboratoire	Agrolab
Analyses effectuées	Cf bordereau d'analyses	Date de réception labo	c.f bordereau d'analyse	Expédié le	15/04/2022
<u>-</u>					FTQ-233-303-C

ANNEXE 13: BORDEREAUX D'ANALYSES DES ESSAIS DE LABORATOIRE SUR LES GAZ DU SOL

Cette annexe contient 8 pages

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

FONDASOL Environnement (69) Adresse agence 106 avenue Franklin Roosevelt 69120 VAULX-EN-VELIN **FRANCE**

> Date 26.04.2022 N° Client 35008582 N° commande 1148147

RAPPORT D'ANALYSES

n° Cde 1148147 Air

paramètres non accrédités et/ou externalisés sont marqués

Seuls les

Les paramètres réalisés par AL-West BV sont accrédités selon la norme

Client 35008582 FONDASOL Environnement (69)

Référence PR.69EN.22.0018 - Pièce n°001 (AIR) - BDC PO.69EN.22.0110

Date de validation 19.04.22 Prélèvement par: Client

Madame, Monsieur

Nous avons le plaisir de vous adresser ci-joint le rapport définitif des analyses chimiques provenant du laboratoire pour votre dossier en référence.

Nous signalons que le certificat d'analyses ne pourra être reproduit que dans sa totalité. Les annexes éventuelles font partie du rapport.

Nous vous informons que seules les conditions générales de AL-West, déposées à la Chambre du Commerce et de l'Industrie de Deventer, sont en vigueur.

Au cas où vous souhaiteriez recevoir des renseignements complémentaires, nous vous prions de prendre contact avec le service après-vente.

En vous remerciant pour la confiance que vous nous témoignez, nous vous prions d'agréer, Madame, Monsieur l'expression de nos sincères salutations.

Respectueusement,

AL-West B.V. Mme Delphine Colin, Tel. +33/380681935 Chargée relation clientèle

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

n° Cde 1148147 Air

<u>e</u>	N° échant. 269084 269085 269086 269087 269088	Nom d'échantillon	Prélèvement	Site du prélèvement
mpc	269084	PA1-ZM	14.04.2022	
n sy	269085	PA1-ZC	14.04.2022	
és d	269086	PA3-ZM	14.04.2022	
rdu	269087	PA3-ZC	14.04.2022	
t ma	269088	PA4-ZM	14.04.2022	

N° échant.	Nom d'échantillon	Prélève	ement	Site du préle	èvement		<u> </u>
269084	PA1-ZM	14.04.2	2022				
269085	PA1-ZC	14.04.2	2022				
269086	PA3-ZM	14.04.2	2022				
269087	PA3-ZC	14.04.2	2022				
269088	PA4-ZM	14.04.2	2022				
		Unité	269084 PA1-ZM	269085 PA1-ZC	269086 PA3-ZM	269087 PA3-ZC	26908 PA4-Z
Composés	aromatiques						
Naphtalène	(tube)	μg/tube	<0,10	<0,10	<0,10	<0,10	<0,10
Benzène (tı	ube)	μg/tube	<0,05	<0,05	<0,05	<0,05	0,12
Toluène (tu	be)	μg/tube	<0,10	<0,10	0,15	<0,10	0,28
Ethylbenzè	ne (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10	<0,10
m,p-Xylène	(tube)	μg/tube	<0,10	<0,10	<0,10	<0,10	0,17
o-Xylène (tı	ube)	μg/tube	<0,10	<0,10	<0,10	<0,10	0,14
	lènes (tube)	μg/tube	n.d.	n.d.	n.d.	n.d.	0,31
COHV							
1,1-Dichlor	oéthène (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10	<0,10
	Vinyle (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10	<0,10
	s/trans-1,2- hylènes (tube)	μg/tube	n.d. *)	n.d. ^{*)}	n.d.	n.d. ^{*)}	n.d.
Dichloromé	thane (tube)	μg/tube	<0,25	<0,25	<0,25	<0,25	<0,25
Trans-1,2-E	Dichloroéthylène (tube)	μg/tube	<0,20 *)	<0,20 *)	<0,20	<0,20	<0,20
1,1-Dichlor	oéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
cis-1,2-Dich	nloroéthène (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
Trichloromé	ethane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
1,2-Dichlor	péthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
1,1,1-Trichl	oroéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
Tétrachloro	méthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
Trichloroéth	nylène (tube)	μg/tube	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichl	oroéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
Tétrachloro TPH	éthylène (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
	rdrocarbures es (tube)	μg/tube	n.d. *)	n.d. ^{')}	2 *) x)	n.d. '	3 *)
	drocarbures	μg/tube	n.d. *)	n.d. ^{*)}	0,2 *) x)	n.d. *)	0,4
	res aliphatiques >C5-	μg/tube	<2,0	<2,0	<2,0	<2,0 *)	<2,0
C8 (tube)	res aliphatiques >C6-	μg/tube	<2,0 *)	<2,0 "	<2,0 "	<2,0 "	<2,0
C10 (tube)	res aliphatiques >C8-	μg/tube	<2,0 *)	<2,0 "	2,2 "	<2,0 *)	3,0
Hydrocarbu C12 (tube)	res aliphatiques >C10-	μg/tube	<2,0	<2,0 ^{*)}	<2,0 '	<2,0	<2,0

Kamer van Koophandel Nr. 08110898 Directeur ppa. Marc van Gelder VAT/BTW-ID-Nr.: NL 811132559 B01 Dr. Paul Wimmer

ESTING RVA L 005

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

n° Cde 1148147 Air

<u>e</u>	N° échant. 269089 269090 269091 269092 269093	Nom d'échantillon	Prélèvement	Site du prélèvement
Japa	269089	PA4-ZC	14.04.2022	
n sy	269090	PA6-ZM	14.04.2022	
és d	269091	PA6-ZC	14.04.2022	
rdu	269092	PA7-ZM	14.04.2022	
t ma	269093	PA7-ZC	14.04.2022	

N° échant.	Nom d'échantillon	Prélève	ement	Site du prélé	evement		
269089	PA4-ZC	14.04.2	2022				
269090	PA6-ZM	14.04.2	2022				
269091	PA6-ZC	14.04.2	2022				
269092	PA7-ZM	14.04.2	2022				
269093	PA7-ZC	14.04.2	2022				
		Unité	269089 PA4-ZC	269090 PA6-ZM	269091 PA6-ZC	269092 PA7-ZM	2690
Composés	aromatiques						
Naphtalène	(tube)	μg/tube	<0,10	<0,10	<0,10	<0,10	<0,10
Benzène (tu	ube)	µg/tube	<0,05	<0,05	<0,05	0,08	<0,05
Toluène (tu	be)	μg/tube	<0,10	0,15	<0,10	0,21	<0,10
Ethylbenzèi	ne (tube)	µg/tube	<0,10	<0,10	<0,10	<0,10	<0,10
m,p-Xylène	(tube)	µg/tube	<0,10	<0,10	<0,10	0,22	<0,10
o-Xylène (tu	ube)	µg/tube	<0,10	<0,10	<0,10	0,20	<0,10
Somme Xy	lènes (tube)	µg/tube	n.d.	n.d.	n.d.	0,42	n.d.
COHV							
1,1-Dichlord	oéthène (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10	<0,10
Chlorure de	Vinyle (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10	<0,10
Somme cis Dichloroétl	s/trans-1,2- hylènes (tube)	μg/tube	n.d. ^{*)}	n.d. *)	n.d. *)	n.d. *)	n.d.
Dichloromé	thane (tube)	µg/tube	<0,25	<0,25	<0,25	<0,25	<0,25
Trans-1,2-D	Dichloroéthylène (tube)	μg/tube	<0,20 *)	<0,20 *)	<0,20 *)	<0,20 *)	<0,20
1,1-Dichlord	oéthane (tube)	µg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
cis-1,2-Dich	nloroéthène (tube)	µg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
Trichloromé	thane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
1,2-Dichlord	oéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
1,1,1-Trichle	oroéthane (tube)	µg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
Tétrachloro	méthane (tube)	µg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
Trichloroéth	ylène (tube)	µg/tube	<0,05	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichle	oroéthane (tube)	µg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
Tétrachloro TPH	éthylène (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20	<0,20
Somme Hy aliphatique	drocarbures es (tube)	μg/tube	n.d. *)	3 *) x)	n.d. ^{*)}	4 *) x)	n.d.
	drocarbures	μg/tube	n.d. *)	0,2 *) x)	n.d. ^{*)}	0,3 *) x)	n.d.
Hydrocarbu C6 (tube)	res aliphatiques >C5-	μg/tube	<2,0	<2,0 *)	<2,0 *)	<2,0 ')	<2,0
C8 (tube)	res aliphatiques >C6-	μg/tube	<2,0 *)	<2,0 ''	<2,0 "	<2,0 "	<2,0
C10 (tube)	res aliphatiques >C8-	μg/tube	<2,0 *)	3,1 "	<2,0 *)	4,1 "	<2,0
Hydrocarbu C12 (tube)	res aliphatiques >C10-	µg/tube	<2,0 *)	<2,0	<2,0	<2,0	<2,0

e-Mail: info@al-west.nl, www.al-west.nl

V° échant.	Nom d'échantillon	Prélèv	ement	Site du prélè	evement	
269094	PA9-ZM	14.04.	2022			
269095	PA9-ZC	14.04.	2022			
269096	BTER-ZM	14.04.	2022			
269097	BTRA-ZM	14.04.	2022			
		Unité	269094 PA9-ZM	269095 PA9-ZC	269096 BTER-ZM	269097 BTRA-ZM
Composés	s aromatiques					
Naphtalène	e (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10
Benzène (t	ube)	μg/tube	<0,05	<0,05	<0,05	<0,05
Toluène (tu	ıbe)	μg/tube	0,10	<0,10	<0,10	<0,10
Ethylbenzè	ene (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10
m,p-Xylène	e (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10
o-Xylène (t	tube)	μg/tube	<0,10	<0,10	<0,10	<0,10
	/lènes (tube)	μg/tube	n.d.	n.d.	n.d.	n.d.
COHV						
	oéthène (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10
	e Vinyle (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10
Dichloroét	s/trans-1,2- thylènes (tube)	µg/tube	n.d. *)	n.d. *)	n.d. "	n.d. '
	ethane (tube)	μg/tube	<0,25	<0,25	<0,25	<0,25
	Dichloroéthylène (tube)	μg/tube	<0,20 *)	<0,20	<0,20	<0,20
	oéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
	hloroéthène (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
	éthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
	oéthane (tube)	µg/tube	<0,20	<0,20	<0,20	<0,20
	loroéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
	ométhane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
	hylène (tube)	μg/tube	<0,05	<0,05	<0,05	<0,05
• •	loroéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
Tétrachlord TPH	péthylène (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
Somme Hy aliphatiqu	ydrocarbures es (tube)	μg/tube	4 *) x)	n.d. *)	n.d. *)	n.d. *)
Somme Hy aromatiqu	ydrocarbures es (tube)	μg/tube	0,1 ^{*) x)}	n.d. *)	n.d. *)	n.d. *)
C6 (tube)	ures aliphatiques >C5-	μg/tube	<2,0 *)	<2,0 *)	<2,0 *)	<2,0 *)
C8 (tube)	ures aliphatiques >C6-	μg/tube	<2,0 *)	<2,0 *)	<2,0	<2,0 *)
C10 (tube)	ures aliphatiques >C8-	μg/tube	<2,0 *)	<2,0 *)	<2,0 *)	<2,0 *)
Hydrocarbı C12 (tube)	ures aliphatiques >C10-	μg/tube	3,8 ^{*)}	<2,0	<2,0 ^{*)}	<2,0 ⁹

	Unité	269094 PA9-ZM	269095 PA9-ZC	269096 BTER-ZM	269097 BTRA-ZM
Composés aromatiques					
Naphtalène (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10
Benzène (tube)	μg/tube	<0,05	<0,05	<0,05	<0,05
Toluène (tube)	μg/tube	0,10	<0,10	<0,10	<0,10
Ethylbenzène (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10
m,p-Xylène (tube)	µg/tube	<0,10	<0,10	<0,10	<0,10
o-Xylène (tube)	µg/tube	<0,10	<0,10	<0,10	<0,10
Somme Xylènes (tube)	μg/tube	n.d.	n.d.	n.d.	n.d.
COHV					
1,1-Dichloroéthène (tube)	µg/tube	<0,10	<0,10	<0,10	<0,10
Chlorure de Vinyle (tube)	μg/tube	<0,10	<0,10	<0,10	<0,10
Somme cis/trans-1,2- Dichloroéthylènes (tube)	µg/tube	n.d. *)	n.d. *)	n.d. *)	n.d. '
Dichlorométhane (tube)	μg/tube	<0,25	<0,25	<0,25	<0,25
Trans-1,2-Dichloroéthylène (tube)	μg/tube	<0,20 ^{*)}	<0,20 ^{*)}	<0,20 ^{*)}	<0,20
1,1-Dichloroéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
cis-1,2-Dichloroéthène (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
Trichlorométhane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
1,2-Dichloroéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
1,1,1-Trichloroéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
Tétrachlorométhane (tube)	µg/tube	<0,20	<0,20	<0,20	<0,20
Trichloroéthylène (tube)	μg/tube	<0,05	<0,05	<0,05	<0,05
1,1,2-Trichloroéthane (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
Tétrachloroéthylène (tube)	μg/tube	<0,20	<0,20	<0,20	<0,20
TPH					
Somme Hydrocarbures aliphatiques (tube)	μg/tube	4 *) x)	n.d. *)	n.d. *)	n.d. ["]
Somme Hydrocarbures aromatiques (tube)	μg/tube	0,1 *) x)	n.d. ^{')}	n.d. *)	n.d. "
Hydrocarbures aliphatiques >C5-C6 (tube)	μg/tube	<2,0	<2,0	<2,0	<2,0
Hydrocarbures aliphatiques >C6-C8 (tube)	μg/tube	<2,0	<2,0	<2,0 *)	<2,0
Hydrocarbures aliphatiques >C8-C10 (tube)	μg/tube	<2,0 *)	<2,0	<2,0 *)	<2,0
Hydrocarbures aliphatiques >C10-C12 (tube)	μg/tube	3,8	<2,0	<2,0	<2,0

DOC-13-18294233-FR-P4

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

n° Cde 1148147 Air

	Unité	26908 4 PA1-ZN	-	26908 PA1-		26908 PA3-2		26908 PA3-2	-	269088 PA4-ZM
ТРН										
Hydrocarbures aliphatiques >C12-C16 (tube)	μg/tube	<2,0	*)	<2,0	*)	<2,0	*)	<2,0	*)	<2,0
Hydrocarbures aromatiques >C6- C7 (tube)	μg/tube	<0,050	*)	<0,050	*)	<0,050	*)	<0,050	*)	0,12
Hydrocarbures aromatiques >C7- C8 (tube)	μg/tube	<0,10	*)	<0,10	*)	0,15	*)	<0,10	*)	0,28
Hydrocarbures aromatiques >C8-C10 (tube)	μg/tube	<2,0	*)	<2,0	*)	<2,0	*)	<2,0	*)	<2,0
Hydrocarbures aromatiques >C10-C12 (tube)	μg/tube	<2,0	*)	<2,0	*)	<2,0	*)	<2,0	*)	<2,0
Hydrocarbures aromatiques >C12-C16 (tube)	μg/tube	<2,0	*)	<2,0	*)	<2,0	*)	<2,0	*)	<2,0 *)
Autres analyses										
Mercure (Hg)	μg/filtre	0,010		0,009		0,012		0,008		0,009

DOC-13-18294233-FR-P5

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148147 Air

	Unité	269089 PA4-ZC	2690 9		26909 PA6-2	-	269092 PA7-ZN		269093 PA7-ZC
TPH									
Hydrocarbures aliphatiques >C12-C16 (tube)	μg/tube	<2,0	<2,0	*)	<2,0	*)	<2,0	*)	<2,0
Hydrocarbures aromatiques >C6-C7 (tube)	μg/tube	< 0,050	<0,050	*)	<0,050	*)	0,079	*)	<0,050
Hydrocarbures aromatiques >C7-C8 (tube)	µg/tube	<0,10 ^{*)}	0,15	*)	<0,10	*)	0,21	*)	<0,10
Hydrocarbures aromatiques >C8-C10 (tube)	μg/tube	<2,0	<2,0	*)	<2,0	*)	<2,0	*)	<2,0
Hydrocarbures aromatiques >C10-C12 (tube)	μg/tube	<2,0	<2,0	*)	<2,0	*)	<2,0	*)	<2,0
Hydrocarbures aromatiques >C12-C16 (tube)	μg/tube	<2,0	<2,0	*)	<2,0	*)	<2,0	*)	<2,0
Autres analyses									
Mercure (Hg)	μg/filtre	0,008	0,013		0,009		0,010		0,008

DOC-13-18294233-FR-P6

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148147 Air

paramètres non accrédités et/ou externalisés sont marqués du symbole "*) ".

	Unité	269094 PA9-ZM	269095 PA9-ZC	269096 BTER-ZM	269097 BTRA-ZM
TPH					
Hydrocarbures aliphatiques >C12- C16 (tube)	μg/tube	<2,0 *)	<2,0 *)	<2,0 *)	<2,0 *)
Hydrocarbures aromatiques >C6- C7 (tube)	μg/tube	<0,050	<0,050	<0,050	<0,050
Hydrocarbures aromatiques >C7- C8 (tube)	µg/tube	0,10	<0,10 ^{*)}	< 0,10 '	<0,10
Hydrocarbures aromatiques >C8- C10 (tube)	µg/tube	<2,0	<2,0 *)	<2,0 *)	<2,0 *)
Hydrocarbures aromatiques >C10- C12 (tube)	μg/tube	<2,0	<2,0 *)	<2,0 *)	<2,0
Hydrocarbures aromatiques >C12- C16 (tube)	μg/tube	<2,0	<2,0 *)	<2,0	<2,0
Autres analyses					
Mercure (Hg)	μg/filtre	0,010	0,008	0,007	0,008

x) Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

Explication: dans la colonne de résultats "<" signifie inférieur à la limite de quantification; n.d. signifie non déterminé.

Les incertitudes de mesure analytiques spécifiques aux paramètres ainsi que des informations sur la procédure de calcul sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude de mesure.

Début des analyses: 19.04.2022 Fin des analyses: 26.04.2022

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. Mme Delphine Colin, Tel. +33/380681935 Chargée relation clientèle

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls

AL-West B.V.

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

n° Cde 1148147 Air

Liste des méthodes

conforme NF ISO 17733: Mercure (Hg)

méthode interne *): Somme Hydrocarbures aliphatiques (tube) Somme Hydrocarbures aromatiques (tube)

Hydrocarbures aliphatiques >C5-C6 (tube)
Hydrocarbures aliphatiques >C6-C8 (tube)
Hydrocarbures aliphatiques >C10-C12 (tube)
Hydrocarbures aliphatiques >C10-C12 (tube)
Hydrocarbures aromatiques >C7-C8 (tube)
Hydrocarbures aromatiques >C10-C12 (tube)
Hydrocarbures aromatiques >C12-C16 (tube)
Hydrocarbures aromatiques >C12-C16 (tube)
Hydrocarbures aromatiques >C12-C16 (tube)

Somme cis/trans-1,2-Dichloroéthylènes (tube) Trans-1,2-Dichloroéthylène (tube)

méthode interne : 1,1-Dichloroéthène (tube) Chlorure de Vinyle (tube) Naphtalène (tube) Benzène (tube) Toluène (tube)

Ethylbenzène (tube) m,p-Xylène (tube) o-Xylène (tube) Somme Xylènes (tube) Dichlorométhane (tube) 1,1-Dichloroéthane (tube) cis-1,2-Dichloroéthène (tube) Trichlorométhane (tube) 1,2-Dichloroéthane (tube) 1,1,1-Trichloroéthane (tube) Tétrachlorométhane (tube) Trichloroéthylène (tube) 1,1,2-Trichloroéthane (tube)

Tétrachloroéthylène (tube)

ANNEXE 14: QUESTIONNAIRE D'ENQUETE PRELIMINAIRE POUR LES PRELEVEMENTS D'AIR AMBIANT

Cette annexe contient 2 pages

Dénomi	nation du bâtiment :	Aucun bâtiment	Date : 13/06/2022	
	Aı	Un questionnaire pour l'ensemble de remplir par l'opérateur avec l'aide du propriétaire		
1.		érieur à proximité (rayon de 500 m) ?	·	
1.1	Présence d'une nap Oui Non	ре		y
		ents (contamination connue, etc):		
1.2	Situation routière ? Autoroute Route à fort trafic Route à trafic mod Route à trafic faibl	éré		
1.3	Situation du site su Zone urbaine Zone péri-urbaine Zone industrielle Zone rurale	rveillé		
1.4	Oui Non	e industrielle (rayon 1 km) ? nature des activités industrielle environnantes : Site pétroch	imique	
1.5	Industrie (précisée Parking Tour de refroissen Aucune		on)	
		Fabrication de produit chimiq	ue de base ou d'engarais	
2.	Description généra	le du bâtiment	Non concerné	
2.1	Année de construc	tion		
2.2	Nombre d'étages			
2.1	Nombre de pièces			
2.1	Usage du bâtiment Bureaux Logements Mixte: préciser Crèche Scolaire / périscola Autre: préciser			

2.5	Type de construction Moellon Bois Autre: préciser	
2.6.1	Existence de pièces d'interface sol-bâtiment Vide sanitaire Parking enterré Sous-sol Cave Autre: préciser	
2.6.2	Nature de l'interface sol-bâtiment Terre battue Dalle béton (si connue, préciser le type de dalle et son épaisseur) Autre : préciser	
2.7	Evènement important survenu dans le bâtiment Incendie Autre : préciser	
2.8	Rénovation récente au niveau du bâtim (moins de 6 mois) (ex. : peintures) ? Oui (préciser) Non	
2.9	Type d'assainissement Collectif Individuel	
2.10	Energie principale de chauffage Gaz Fioul Electrique Autre: préciser Si chaudière, préciser le lieu Si cuve de fioul, préciser le lieu	
2.10.1	Fréquence d'utilisation d'un chauffage d'appoint en hiver Toujours Fréquemment Occasionnellement Jamais	
2.10.2	Type de chauffage d'appoint Fioul Electrique Autre : préciser	
2.11	Présence d'un système spécifique de ventilation (extraction mécanique, ventilation naturelle par conduit) / climatisation Oui Non	
2.12	Présence d'un garage attenant au bâtiment ? Oui Non	
2.13	Présence d'une porte entre le garage et l'habitation ? Oui Non	
2.14	Si oui au 2.13 Dans quelle pièce cette porte donne-t-elle ? Est-elle laissée ouverte ? Un véhicule est-il habituellement garé dans le garage ?	

ANNEXE 15: FICHES DE PRELEVEMENT DE L'AIR AMBIANT

Cette annexe contient 3 pages

FICHE DE PRELEVEMENT D'AIR AMBIANT

Designation de l'ouvrage

AAI

Client	Mairie de Port de Bouc	Date de prélèvement	13/06/2022 - 20/06/2022
Ville	Port de Bouc	Coordonnées	
Adresse	Place des Aigues Douces	X (m) - WGS84 (EPSG:4326)	4,9764406
Chef de projet	Véronique LAGNEAU	Y (m) - WGS84 (EPSG:4326)	43,4025768
N°Affaire	PR.69EN.22.0018	Opérateur	E.ARIKA

	DESCRIPTION DU POINT DE PRELEVEMENT								
Localisation du prel.	Localisation du prel. 🔲 Intérieur 💟 Extérieur Description du lieu de prélèvement Point extérieur sur un parc communal près de jeu pour enfants								
Hauteur du prélèvement	1.00	m	Mesure PID	ure PID 0.00 ppmV Source de contamination ☐ OUI ☑ NON					
Recouvrement des sols	Gra	viers	Référence du PID	3ELY	.A.17	Type de contamination	-		
Conditions de chauffage	Conditions de chauffage Absence Odeur et nature Aucun Conditions de renouvellement d'air								

	PRELEVEMENT DES ECHANTILLONS PASSIFS					Type de prélèvement	☐ ACTIF	✓ PASSIF
Type de	Référence	Nom de l'échantillon	Date de pose	Heure de		Date de dépose	Heure de dépose	Durée du prélèvement
support				pose				Durée du
Charbon actif	Radiello	AAI	13/06/2022	08:45:00		20/06/2022	11:28:00	10238
Badge SKC	-	- AA1	13/00/2022	08:55:00		20/00/2022	11:29:00	10234

OBSERVATIONS

-

PLAN DE SITUATION AA1

PHOTOGRAPHIE DE l'OUVRAGE

CONDITIONNEMENT, CONSERVATION ET TRANSPORT								
Type de support Voir plus haut Conditionnement Glacière réfrigérée Laboratoire Tera environnement								
Analyses effectuées	Analyses effectuées c.f bordereau d'analyse Date de réception labo c.f bordereau d'analyse Expédié le 22/06/2022							

FTQ-233-306-B

FICHE DE PRELEVEMENT D'AIR AMBIANT

AA2

Client	Mairie de Port de Bouc	Date de prélèvement	13/06/2022 - 20/06/2022	
Ville	Port de Bouc	Coordonnées		
Adresse	Place des Aigues Douces	X (m) - WGS84 (EPSG:4326)	4,9763003	
Chef de projet	Véronique LAGNEAU	Y (m) - WGS84 (EPSG:4326)	43,4020186	
N°Affaire	PR.69EN.22.0018	Opérateur	E.ARIKA	

DESCRIPTION DU POINT DE PRELEVEMENT								
Localisation du prel.	Localisation du prel. Intérieur 🕝 Intérieur 🕝 Extérieur Description du lieu de prélèvement Point extérieur sur un parc communal							
Hauteur du prélèvement	1.50	m	Mesure PID	sure PID 0.00 ppmV Source de contamination 🔲 OUI 🛂 NON				
Recouvrement des sols	Gra	viers	Référence du PID	3ELY	.A.17	Type de contamination	-	
Conditions de chauffage Absence Odeur et nature Aucun Conditions de renouvellement d'air								

PRELEVEMENT DES ECHANTILLONS PASSIFS						Type de prélèvement	☐ ACTIF	✓ PASSIF
Type de	Référence	Nom de l'échantillon			Date de dépose	Heure de dépose	Durée du prélèvement	
support			pose				min	
Charbon actif	Radiello	AA2	13/06/2022	08:38:00		20/06/2022	11:24:00	10246
Badge SKC	-	AAZ	13/06/2022	08:35:00		20/06/2022	11:22:00	10247

OBSERVATIONS

-

PLAN DE SITUATION

PHOTOGRAPHIE DE l'OUVRAGE

CONDITIONNEMENT, CONSERVATION ET TRANSPORT								
Type de support	de support Voir plus haut Conditionnement Glacière réfrigérée Laboratoire Tera environnement							
Analyses effectuées c.f bordereau d'analyse Date de réception labo c.f bordereau d'analyse Expédié le 22/06/2022								

FTQ-233-306-B

FICHE DE PRELEVEMENT D'AIR AMBIANT

AA3

Client	Mairie de Port de Bouc	Date de prélèvement	13/06/2022 - 20/06/2022
Ville	Port de Bouc	Coordonnées	
Adresse	Place des Aigues Douces	X (m) - WGS84 (EPSG:4326)	4,9767451
Chef de projet	Véronique LAGNEAU	Y (m) - WGS84 (EPSG:4326)	43,4022819
N°Affaire	PR.69EN.22.0018	Opérateur	E.ARIKA

	DESCRIPTION DU POINT DE PRELEVEMENT										
Localisation du prel.	☐ Intérieur	✓ Extérieur	Description du lieu de p	rélèvement	Point extérieur sur un parc communal						
Hauteur du prélèvement	1.50	m	1esure PID 0.00		ppmV	Source de contamination	OUI	✓ NON			
Recouvrement des sols	Gra	viers	Référence du PID 3ELY		3ELY.A.17 Type de contamination			-			
Conditions de chauffage	Absence		Odeur et nature	Aucun		Conditions de National Prenouvellement d'air		turelles			

	PRELE'	VEMENT DES EC	Type de prélèvement	ACTIF	✓ PASSIF		
Type de support	Référence	Nom de l'échantillon	Date de pose	Heure de	Date de dépose	Heure de dépose	Durée du prélèvement
зарроге				posc			min
Charbon actif	Radiello	AA3	13/06/2022	09:00:00	20/06/2022	11:32:00	10232
Badge SKC	-	AAS	13/06/2022	09:05:00	20/06/2022	11:33:00	10228

OBSERVATIONS

Echantillon témoin

PLAN DE SITUATION AA3

PHOTOGRAPHIE DE l'OUVRAGE

CONDITIONNEMENT, CONSERVATION ET TRANSPORT									
Type de support	e de support Voir plus haut Conditionnement Glacière réfrigérée Laboratoire Tera environnement								
Analyses effectuées c.f bordereau d'analyse Date de réception labo c.f bordereau d'analyse Expédié le 22/06/2022									

FTQ-233-306-B

ANNEXE 16: BORDEREAUX D'ANALYSES DES ESSAIS DE LABORATOIRE SUR L'AIR AMBIANT

Cette annexe contient 5 pages

Accréditation 1-5599, portée disponible sur cofrac.fr

Affaire N° 22AF05536 Commande N° PO.69EN.22.0114

Présentation générale

Affaire N° 22AF05536 Version du rapport : 0

Client: FONDASOL 13 Référence client: PR.69EN.22.0018 PORT DE BOUC

Adresse: 410, Avenue du Passe Temps , 13676 AUBAGNE Cedex

Commande client: PO.69EN.22.0114 **Devis client:** 22DE31604

Date de fin des prélèvements : 20/06/2022

Date de réception des échantillons : 22/06/2022 00:00:00 Rapport transmis le : 06/07/2022

Réserves éventuelles :

Les résultats ne se rapportent qu'aux objets soumis à l'essai. TERA Environnement n'est pas responsable des informations transmises par le client et se dégage de toute responsabilité relative aux durées, températures, volumes de prélèvement ou emplacements notamment. Les concentrations calculées ne sont donc jamais portées par l'accréditation et sont sujettes à caution. Pour les prélèvements passifs, si la température d'exposition n'est pas renseignée, elle sera considérée à 20°C par défaut. Les résultats s'appliquent aux échantillons tels qu'ils ont été reçus.

Les milieux sont spécifiés ainsi : AIA=Air ambiant / ALT=Air des Lieux de Travail / AGA=Gaz des sols -Emission-Air des lieux de travail / AEX=Air à l'émission / GDS=Gaz contenus dans les sols / Eau=Eaux / QAI = Qualité de l'air intérieur / HTS= Hautes technologies - Santé / LAR=LABREF30-ERP / DIV=Divers / SUR=Conta de surface / ADBLUE / CAP=Location de capteurs

Dans la suite du rapport, seuls les paramètres notés avec un (c) sont couverts par l'accréditation.

Présentation des échantillons - Nombre total d'échantillons : 6

Paramètres à analyser	Milieu	Références	Emplacement client	Température	Exposition(min)	Air
		échantillons		d'exposition	p (,	prélevé(L)
Mercure gazeux (-Hg)	AIA	HG BP 20220405-05	AA1	20°C	10234	204,68
Mercure gazeux (-Hg)	AIA	HG BP 20220405-01	AA2	20°C	10247	204,94
Mercure gazeux (-Hg)	AIA	HG BP 20220405-02	AA3	20°C	10228	204,56
Pack BTEX+COHV+Coupes TPH C5-C16	AIA	RAD 145 - 3227	AA1	20°C	10238	
Pack BTEX+COHV+Coupes TPH C5-C16	AIA	RAD 145 - 1083	AA2	20°C	10246	
Pack BTEX+COHV+Coupes TPH C5-C16	AIA	RAD 145 - 1146	AA3	20°C	10232	

Accréditation 1-5599, portée disponible sur cofrac.fr

Affaire N° 22AF05536 Commande N° PO.69EN.22.0114

Badge Mercure passif 520-02-C	Numéro de lot : HG BP 20220405	Lieu de réalisation d	Date d'essais : 05/07/2022	
		Résultat en ng		_
Composés	No CAS	HG BP 20220405-05	HG BP 20220405-01	HG BP 20220405-02
Mercure gazeux (-Hg)(c)	7439-97-6	<5.0	<5.0	<5.0

Les incertitudes sont présentées en annexe de ce rapport.

Badge Mercure passif 520-02-C

		Résultat en ng/m³		
Composés	No CAS	HG BP 20220405-05	HG BP 20220405-01	HG BP 20220405-02
Mercure gazeux (-Hg)	7439-97-6	<24.4	<24.4	<24.4

Accréditation 1-5599, portée disponible sur cofrac.fr

Commande N° PO.69EN.22.0114

Rad code 145 pour COVs	Numéro de lot : -	Lieu	ı de réalisatio	on des essais : Crolles	Date d'essais : 24/06/2022
		Masse	es en ng / sup	pport	
Composés	N°CAS	RAD145 3227	RAD145 1083	RAD145 1146	
Benzene	71-43-2	145	181	213	
Toluene	108-88-3	198	297	387	
Ethylbenzene	100-41-4	844	1306	1543	
m+p - Xylene	108-38-3 / 106-42- 3	154	224	315	
o - Xylene	95-47-6	107	131	165	
Naphthalene	91-20-3	39.0	53.5	65.9	
Chlorure de vinyle	75-01-4	< 5.0	< 5.0	< 5.0	
Dichloromethane	75-09-2	< 5.0	< 5.0	<5.0	
Trichloromethane	67-66-3	< 5.0	8.5	7.9	
Tetrachloromethane	56-23-5	31.4	32.7	47.9	
1,2-Dichloroethane	107-06-2	14.3	20.8	19.6	
1,1-Dichloroethylene	75-35-4	< 5.0	< 5.0	<5.0	
1,2-Dichloroethylene cis-	156-59-2	< 5.0	< 5.0	< 5.0	
1,1,1-Trichloroethane	71-55-6	< 5.0	< 5.0	<5.0	
Trichloroethylene	79-01-6	< 5.0	< 5.0	<5.0	
Tetrachloroethylene	127-18-4	5.4	8.9	12.2	
1,2-Dichloropropane	78-87-5	< 5.0	< 5.0	<5.0	
1,3-Dichloropropene trans-	10061-02-6	< 5.0	< 5.0	<5.0	
1,3-Dichloropropene cis-	10061-01-5	< 5.0	< 5.0	<5.0	
1,2-Dichloroethylene trans-	156-60-5	< 5.0	< 5.0	<5.0	
1,1,2-Trichloroethane	79-00-5	< 5.0	< 5.0	<5.0	
1,1-Dichloroéthane	75-34-3	< 5.0	< 5.0	<5.0	
Chloroethane	75-00-3	< 5.0	< 5.0	<5.0	
Aliphatiques C5-C6	-	271	463	576	
Aliphatiques C6-C7	-	115	183	245	
Aliphatiques >C7-C8	-	216	381	450	
Aliphatiques >C8-C10	-	3012	5065	5678	
Aliphatiques >C10-C12	-	5638	9764	10884	
Aliphatiques >C12-C16	-	360	847	1005	
Aromatiques C6-C7	-	145	181	213	
Aromatiques >C7-C8	-	198	297	387	
Aromatiques >C8-C10	-	5735	8643	10270	
Aromatiques >C10-C12	-	203	288	322	
Aromatiques >C12-C16	-	< 5.0	< 5.0	<5.0	

Les incertitudes sont présentées en annexe 1 de ce rapport.

Accréditation 1-5599, portée disponible sur cofrac.fr

Commande N° PO.69EN.22.0114

Rad code 145 pour COVs

Résultats en μg/m3						
Composés	N°CAS	RAD145 3227	RAD145 1083	RAD145 1146		
Benzene	71-43-2	0.52	0.65	0.77		
Toluene	108-88-3	0.66	0.99	1.3		
Ethylbenzene	100-41-4	3.3	5.1	6.0		
m+p - Xylene	108-38-3 / 106-42- 3	0.58	0.84	1.2		
o - Xylene	95-47-6	0.44	0.53	0.67		
Naphthalene	91-20-3	0.20	0.27	0.33		
Chlorure de vinyle	75-01-4	< 0.03	< 0.03	< 0.03		
Dichloromethane	75-09-2	< 0.02	< 0.02	< 0.02		
Trichloromethane	67-66-3	< 0.02	0.03	0.03		
Tetrachloromethane	56-23-5	0.12	0.13	0.19		
1,2-Dichloroethane	107-06-2	0.19	0.27	0.25		
1,1-Dichloroethylene	75-35-4	< 0.07	< 0.06	< 0.07		
1,2-Dichloroethylene cis-	156-59-2	< 0.07	< 0.06	< 0.07		
1,1,1-Trichloroethane	71-55-6	< 0.03	< 0.03	< 0.03		
Trichloroethylene	79-01-6	< 0.02	< 0.02	< 0.02		
Tetrachloroethylene	127-18-4	0.02	0.04	0.05		
1,2-Dichloropropane	78-87-5	< 0.02	< 0.02	< 0.02		
1,3-Dichloropropene trans-	10061-02-6	< 0.02	< 0.02	< 0.02		
1,3-Dichloropropene cis-	10061-01-5	< 0.02	< 0.02	< 0.02		
1,2-Dichloroethylene trans-	156-60-5	< 0.07	< 0.06	< 0.07		
1,1,2-Trichloroethane	79-00-5	< 0.03	< 0.03	< 0.03		
1,1-Dichloroéthane	75-34-3	< 0.07	< 0.06	< 0.07		
Chloroethane	75-00-3	< 0.07	< 0.06	< 0.07		
Aliphatiques C5-C6	-	1.1	1.8	2.3		
Aliphatiques C6-C7	-	0.45	0.72	0.97		
Aliphatiques >C7-C8	-	0.87	1.5	1.8		
Aliphatiques >C8-C10	-	13.4	22.5	25.3		
Aliphatiques >C10-C12	-	36.6	63.4	70.8		
Aliphatiques >C12-C16	-	3.0	7.1	8.4		
Aromatiques C6-C7	-	0.52	0.65	0.77		
Aromatiques >C7-C8	-	0.66	0.99	1.3		
Aromatiques >C8-C10	-	22.9	34.4	41.0		
Aromatiques >C10-C12	-	0.93	1.3	1.5		
Aromatiques >C12-C16	-	< 0.02	<0.02	<0.02		

La reproduction n'est autorisée que dans son intégralité

Accréditation 1-5599, portée disponible sur cofrac.fr

Affaire N° 22AF05536 Commande N° PO.69EN.22.0114

Δ	n	n	exe

Composés	Supports	Norme	Technique analytique	Incertitude basse %	Incertitude haute %	LQ	Unité
Mercure gazeux (-Hg)	Badge Mercure passif 520-02-C	Méthode interne MO.LAB.861	ICPMS	40	20	5	ng
Ethylbenzène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Cis 1,3 Dichloropropène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Trans 1,3 Dichloropropène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
1,2-Dichloroéthane (1,2-DCE)	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
(m+p) Xylène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Toluène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Tétrachloroéthylène (Perchloroéthylène)	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Cis 1,2 Dichloroéthylène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Trans 1,2 Dichloroéthylène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Tétrachlorométhane (CCl4)	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Trichlorométhane (Chloroforme)	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Benzène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
1,1,1-Trichloroéthane	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Chloroéthane	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Chlorure de Vinyle Monomère (CVM)	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Dichlorométhane (DCM)	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
1,1-Dichloroéthane (1,1-DCE)	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
1,1-Dichloroéthylène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
1,2-Dichloropropane	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
1,1,2-Trichloroéthane	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Trichloroéthylène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Naphtalène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
o-Xylène	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Coupe Aliphatique C6-C7	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Coupe Aliphatique >C7-C8	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Coupe Aliphatique >C8-C10	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Coupe Aliphatique >C10-C12	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Coupe Aromatique C6-C7	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Coupe Aromatique >C7-C8	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Coupe Aromatique >C8-C10	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Coupe Aromatique >C10-C12	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng
Coupe Aliphatique >C12-C16	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	25	5	ng
Coupe Aromatique >C12-C16	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	25	5	ng
Coupe Aliphatique C5-C6	Rad code 145 COVs basse LQ	NF EN ISO 16017-2	ATDGCMS C	30	30	5	ng

	Approbation		
Nom(s)	Aurélie GAILLA	Nathalie PINTO SILVA	
Fonction(s)	Ingénieur analyse	Ingénieur analyse	
Visa(s)	Sailla	Arb	

FIN DU RAPPORT

www.groupefondasol.com

AGENCE ENVIRONNEMENT CENTRE-SUD